Cours

Camillo De Lellis - Center manifolds and regularity of area-minimizing currents (Part 2)

Réalisation : 23 juin 2015 Mise en ligne : 23 juin 2015
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
  • audio 1 audio 2 audio 3
Descriptif

A celebrated theorem of Almgren shows that every integer rectifiable current which minimizes (locally) the area is a smooth submanifold except for a singular set of codimension at most 2. Almgren’s theorem is sharp in codimension higher than 1, because holomorphic subvarieties of Cn are area-minimizing. In fact the typical singularity of a 2-dimensional area-minimizing current is modelled by branch points of holomorphic curves. These singularities are rather difficult to analyze because they might be very high order phenomena.

Intervenants
Thèmes
Notice
Langue :
Anglais
Crédits
Fanny Bastien (Réalisation)
Conditions d'utilisation
CC BY-NC-ND 4.0
Citer cette ressource:
I_Fourier. (2015, 23 juin). Camillo De Lellis - Center manifolds and regularity of area-minimizing currents (Part 2). [Vidéo]. Canal-U. https://www.canal-u.tv/86447. (Consultée le 24 mai 2022)
Contacter
Documentation

Dans la même collection

Sur le même thème