Notice
Camillo De Lellis - Center manifolds and regularity of area-minimizing currents (Part 2)
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
Descriptif
A celebrated theorem of Almgren shows that every integer rectifiable current which minimizes (locally) the area is a smooth submanifold except for a singular set of codimension at most 2. Almgren’s theorem is sharp in codimension higher than 1, because holomorphic subvarieties of Cn are area-minimizing. In fact the typical singularity of a 2-dimensional area-minimizing current is modelled by branch points of holomorphic curves. These singularities are rather difficult to analyze because they might be very high order phenomena.
Thème
Documentation
Liens
Dans la même collection
- 
Matthias Röger - A curvature energy for bilayer membranesRögerMatthiasA curvature energy for bilayer membranes 
- 
Giovanni Pisante - Duality approach to a variational problem involving a polyconvex integrandPisanteGiovanniDuality approach to a variational problem involving a polyconvex integrand 
- 
Neshan Wickramasereka - Stability in minimal and CMC hypersurfacesWickramasekaraNeshanindisponible 
- 
- 
Gian Paolo Leonardi - Towards a unified theory of surface discretizationLeonardiGian Paoloindisponible 
- 
- 
- 
- 
- 
- 
Free discontinuity problems and Robin boundary conditionsGiacominiAlessandropar Alessandro Giacomini, université de Brescia 
- 
Camillo De Lellis - Center manifolds and regularity of area-minimizing currents (Part 1)A celebrated theorem of Almgren shows that every integer rectifiable current which minimizes (locally) the area is a smooth submanifold except for a singular set of codimension at most 2. 
Avec les mêmes intervenants et intervenantes
- 
Camillo De Lellis - Center manifolds and regularity of area-minimizing currents (Part 5)De LellisCamilloA celebrated theorem of Almgren shows that every integer rectifiable current which minimizes (locally) the area is a smooth submanifold except for a singular set of codimension at most 2. 
Sur le même thème
- 
"Le mathématicien Petre (Pierre) Sergescu, historien des sciences, personnalité du XXe siècle"HerléaAlexandreAlexandre HERLEA est membre de la section « Sciences, histoire des sciences et des techniques et archéologie industrielle » du CTHS. Professeur émérite des universités, membre effectif de l'Académie 
- 
Webinaire sur la rédaction des PGDLouvetViolaineRédaction des Plans de Gestion de Données (PGD) sous l’angle des besoins de la communauté mathématique. 
- 
Alexandre Booms : « Usage de matériel pédagogique adapté en géométrie : une transposition à interro…« Usage de matériel pédagogique adapté en géométrie : une transposition à interroger ». Alexandre Booms, doctorant (Université de Reims Champagne-Ardenne - Cérep UR 4692) 
- 
J. Wang - Topological rigidity and positive scalar curvatureWangJianIn this talk, we shall describe some topological rigidity and its relationship with positive scalar curvature. Precisely, we will present a proof that a complete contractible 3-manifold with 
- 
R. Perales - Recent Intrinsic Flat Convergence TheoremsPeralesRaquelThéorèmes récents de convergence plane intrinsèque 
- 
J. Fine - Knots, minimal surfaces and J-holomorphic curvesFineJoëlI will describe work in progress, parts of which are joint with Marcelo Alves. Let L be a knot or link in the 3-sphere. I will explain how one can count minimal surfaces in hyperbolic 4-space 
- 
D. Semola - Boundary regularity and stability under lower Ricci boundsSemolaDanieleThe theory of non smooth spaces with lower Ricci Curvature bounds has undergone huge developments in the last thirty years. On the one hand the impetus came from Gromov’s precompactness theorem 
- 
D. Stern - Harmonic map methods in spectral geometrySternDanielOver the last fifty years, the problem of finding sharp upper bounds for area-normalized Laplacian eigenvalues on closed surfaces has attracted the attention of many geometers, due in part to 
- 
P. Burkhardt - Pointwise lower scalar curvature bounds for C0 metrics via regularizing Ricci flowBurkhardt-GuimPaulaWe propose a class of local definitions of weak lower scalar curvature bounds that is well defined for C0 metrics. We show the following: that our definitions are stable under greater-than-second 
- 
R. Bamler - Compactness and partial regularity theory of Ricci flows in higher dimensionsBamlerRichard H.We present a new compactness theory of Ricci flows. This theory states that any sequence of Ricci flows that is pointed in an appropriate sense, subsequentially converges to a synthetic flow. 
- 
C. Li - Classifying sufficiently connected PSC manifolds in 4 and 5 dimensionsLiChaoIn this talk, I will discuss some recent developments on the topology of closed manifolds admitting Riemannian metrics of positive scalar curvature. In particular, we will prove if a closed PSC 
- 
Y. Lai - A family of 3d steady gradient Ricci solitons that are flying wingsLaiYiWe find a family of 3d steady gradient Ricci solitons that are flying wings. This verifies a conjecture by Hamilton. For a 3d flying wing, we show that the scalar curvature does not vanish at 
 














 
  







