Cours/Séminaire

# Claude Lebrun - Mass, Scalar Curvature, Kähler Geometry, and All That

Réalisation : 2 mai 2019 Mise en ligne : 2 mai 2019
• document 1 document 2 document 3
• niveau 1 niveau 2 niveau 3
• audio 1 audio 2 audio 3
Descriptif

Given a complete Riemannian manifold that looks enough like Euclidean space at infinity, physicists have defined a quantity called the “mass” that measures the asymptotic deviation of the geometry from the Euclidean model. After first providing a self-contained introduction to the key underlying geometric concepts, I will go on to explain a simple formula, discovered in joint work with Hajo Hein, for the mass of any asymptotically locally Euclidean (ALE) Kähler manifold. When the metric is actually AE (asymptotically Euclidean), our formula not only implies the positive mass theorem for Kähler metrics, but also yields a Penrose-type inequality for the mass. I will also briefly indicate some recent technical improvements that allow one to prove these results assuming only minimal metric fall-off assumptions at infinity.

Intervenants
Thèmes
Notice
Langue :
Anglais
Crédits
Donovan HUMPHRIES (Réalisation)
Conditions d'utilisation
CC BY-NC-ND 4.0
Citer cette ressource:
I_Fourier. (2019, 2 mai). Claude Lebrun - Mass, Scalar Curvature, Kähler Geometry, and All That. [Vidéo]. Canal-U. https://www.canal-u.tv/101363. (Consultée le 26 juin 2022)
Contacter
Documentation

## Sur le même thème

• Conférence
01:01:02
J. Fine - Knots, minimal surfaces and J-holomorphic curves
Fine
Joël

I will describe work in progress, parts of which are joint with Marcelo Alves. Let L be a knot or link in the 3-sphere. I will explain how one can count minimal surfaces in hyperbolic 4-space

• Conférence
01:07:59
D. Tewodrose - Limits of Riemannian manifolds satisfying a uniform Kato condition
Tewodrose
David

I will present a joint work with G. Carron and I. Mondello where we study Kato limit spaces. These are metric measure spaces obtained as Gromov-Hausdorff limits of smooth n-dimensional Riemannian

• Conférence
01:00:08
D. Stern - Harmonic map methods in spectral geometry
Stern
Daniel

Over the last fifty years, the problem of finding sharp upper bounds for area-normalized Laplacian eigenvalues on closed surfaces has attracted the attention of many geometers, due in part to

• Conférence
00:28:18
J. Wang - Topological rigidity and positive scalar curvature
Wang
Jian

In this talk, we shall describe some topological rigidity and its relationship with positive scalar curvature. Precisely, we will present a proof that a complete contractible 3-manifold with

• Conférence
01:03:34
C. Li - Classifying sufficiently connected PSC manifolds in 4 and 5 dimensions
Li
Chao

In this talk, I will discuss some recent developments on the topology of closed manifolds admitting Riemannian metrics of positive scalar curvature. In particular, we will prove if a closed PSC

• Conférence
01:02:13
D. Semola - Boundary regularity and stability under lower Ricci bounds
Semola
Daniele

The theory of non smooth spaces with lower Ricci Curvature bounds has undergone huge developments in the last thirty years. On the one hand the impetus came from Gromov’s precompactness theorem

• Conférence
01:14:44
A. Mondino - Time-like Ricci curvature bounds via optimal transport
Mondino
Andrea

The goal of the talk is to present a recent work in collaboration with Cavalletti (SISSA) on optimal transport in Lorentzian synthetic spaces. The aim is to set up a “Lorentzian analog” of the

• Conférence
01:02:33
Y. Lai - A family of 3d steady gradient Ricci solitons that are flying wings
Lai
Yi

We find a family of 3d steady gradient Ricci solitons that are flying wings. This verifies a conjecture by Hamilton. For a 3d flying wing, we show that the scalar curvature does not vanish at

• Conférence
00:54:15
R. Perales - Recent Intrinsic Flat Convergence Theorems
Perales Aguilar
Raquel

Given a closed and oriented manifold M and Riemannian tensors g0, g1, ... on M that satisfy g0 < gj, vol(M, gj)→vol (M, g0) and diam(M, gj)≤D we will see that (M, gj) converges to (M, g0) in the