Notice
Emmanuel Trelat - Analyse spectrale des Laplaciens sous-Riemanniens, mesure de Weyl
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
Descriptif
Dans une série de travaux avec Yves Colin de Verdière et Luc Hillairet, nous étudions les propriétés spectrales des Laplaciens sous-Riemanniens, qui sont des opérateurs hypoelliptiques. L'objectif principal est d'obtenir des résultats d'ergodicité quantique, ce que nous avons fait en géométrie de contact 3D.
Dans le cas général, nous étudions l'asymptotique en temps petit des noyaux de la chaleur en géométrie sous-Riemannienne. Nous démontrons qu'elle est donnée par le noyau de la chaleur de la nilpotentisation.
Dans le cas équirégulier, nous en déduisons la loi locale puis la loi microlocale de Weyl, mettant en évidence ce qu'on appelle la mesure de Weyl. Cette mesure co'incide avec la mesure de Popp en basse dimension, mais en est différente en général. Nous montrons qu'il y a concentration spectrale sur le faisceau engendré par les crochets de longueur r-1, où r est le degré de nonholonomie.
Dans le cas singulier, nous étudions les cas de Martinet et de Grushin, obtenant en particulier un développement asymptotique à deux termes et la loi locale de Weyl.
Thème
Avec les mêmes intervenants et intervenantes
-
Emmanuel Trélat - Tout est sous contrôle
TrélatEmmanuelSéminaire du magistère de math 13 octobre 2016
-
Emmanuel Trélat - Théorie du contrôle optimal et applications aux missions spatiales
TrélatEmmanuelLa problématique du contrôle optimal est de guider l'évolution en temps d'un système donné vers une configuration finale souhaitée, tout en minimisant un certain critère. Le point saillant de
Sur le même thème
-
"Le mathématicien Petre (Pierre) Sergescu, historien des sciences, personnalité du XXe siècle"
HerléaAlexandreAlexandre HERLEA est membre de la section « Sciences, histoire des sciences et des techniques et archéologie industrielle » du CTHS. Professeur émérite des universités, membre effectif de l'Académie
-
Webinaire sur la rédaction des PGD
LouvetViolaineRédaction des Plans de Gestion de Données (PGD) sous l’angle des besoins de la communauté mathématique.
-
Alexandre Booms : « Usage de matériel pédagogique adapté en géométrie : une transposition à interro…
« Usage de matériel pédagogique adapté en géométrie : une transposition à interroger ». Alexandre Booms, doctorant (Université de Reims Champagne-Ardenne - Cérep UR 4692)
-
A. Mondino - Time-like Ricci curvature bounds via optimal transport
MondinoAndreaThe goal of the talk is to present a recent work in collaboration with Cavalletti (SISSA) on optimal transport in Lorentzian synthetic spaces. The aim is to set up a “Lorentzian analog” of the
-
M. Lesourd - Positive Scalar Curvature on Noncompact Manifolds and the Positive Mass Theorem
LesourdMartinThe study of positive scalar curvature on noncompact manifolds has seen significant progress in the last few years. A major role has been played by Gromov's results and conjectures, and in
-
R. Perales - Recent Intrinsic Flat Convergence Theorems
PeralesRaquelThéorèmes récents de convergence plane intrinsèque
-
J. Fine - Knots, minimal surfaces and J-holomorphic curves
FineJoëlI will describe work in progress, parts of which are joint with Marcelo Alves. Let L be a knot or link in the 3-sphere. I will explain how one can count minimal surfaces in hyperbolic 4-space
-
J. Wang - Topological rigidity and positive scalar curvature
WangJianIn this talk, we shall describe some topological rigidity and its relationship with positive scalar curvature. Precisely, we will present a proof that a complete contractible 3-manifold with
-
D. Semola - Boundary regularity and stability under lower Ricci bounds
SemolaDanieleThe theory of non smooth spaces with lower Ricci Curvature bounds has undergone huge developments in the last thirty years. On the one hand the impetus came from Gromov’s precompactness theorem
-
D. Stern - Harmonic map methods in spectral geometry
SternDanielOver the last fifty years, the problem of finding sharp upper bounds for area-normalized Laplacian eigenvalues on closed surfaces has attracted the attention of many geometers, due in part to
-
R. Bamler - Compactness and partial regularity theory of Ricci flows in higher dimensions
BamlerRichard H.We present a new compactness theory of Ricci flows. This theory states that any sequence of Ricci flows that is pointed in an appropriate sense, subsequentially converges to a synthetic flow.
-
P. Burkhardt - Pointwise lower scalar curvature bounds for C0 metrics via regularizing Ricci flow
Burkhardt-GuimPaulaWe propose a class of local definitions of weak lower scalar curvature bounds that is well defined for C0 metrics. We show the following: that our definitions are stable under greater-than-second