Notice
Emmanuel Trélat - Théorie du contrôle optimal et applications aux missions spatiales
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
Descriptif
La problématique du contrôle optimal est de guider l'évolution en temps d'un système donné vers une configuration finale souhaitée, tout en minimisant un certain critère. Le point saillant de cette théorie, qui généralise le calcul des variations, est le principe du maximum de Pontryagin, qui donne des conditions nécessaires d'optimalité du premier ordre. Du point de vue numérique ce principe réduit le problème initial à un problème aux deux bouts qui peut être résolu par une méthode de tir.En pratique il est très difficile de faire converger numériquement une méthode de tir, et elle doit être combinée à d'autres approches. Je parlerai ici, sur des exemples motivés par l'aérospatiale, des méthodes de continuation numérique, de contrôle géométrique, puis d'éléments de théorie des systèmes dynamiques qui, convenablement utilisés, permettent de planifier des missions spatiales interplanétaires.
Thème
Documentation
Liens
Avec les mêmes intervenants et intervenantes
-
Emmanuel Trélat - Tout est sous contrôle
TrélatEmmanuelSéminaire du magistère de math 13 octobre 2016
-
Emmanuel Trelat - Analyse spectrale des Laplaciens sous-Riemanniens, mesure de Weyl
TrélatEmmanuelDans une série de travaux avec Yves Colin de Verdière et Luc Hillairet, nous étudions les propriétés spectrales des Laplaciens sous-Riemanniens, qui sont des opérateurs hypoelliptiques. L'objectif
Sur le même thème
-
"Le mathématicien Petre (Pierre) Sergescu, historien des sciences, personnalité du XXe siècle"
HerléaAlexandreAlexandre HERLEA est membre de la section « Sciences, histoire des sciences et des techniques et archéologie industrielle » du CTHS. Professeur émérite des universités, membre effectif de l'Académie
-
Webinaire sur la rédaction des PGD
LouvetViolaineRédaction des Plans de Gestion de Données (PGD) sous l’angle des besoins de la communauté mathématique.
-
Alexandre Booms : « Usage de matériel pédagogique adapté en géométrie : une transposition à interro…
« Usage de matériel pédagogique adapté en géométrie : une transposition à interroger ». Alexandre Booms, doctorant (Université de Reims Champagne-Ardenne - Cérep UR 4692)
-
M. Lesourd - Positive Scalar Curvature on Noncompact Manifolds and the Positive Mass Theorem
LesourdMartinThe study of positive scalar curvature on noncompact manifolds has seen significant progress in the last few years. A major role has been played by Gromov's results and conjectures, and in
-
R. Perales - Recent Intrinsic Flat Convergence Theorems
PeralesRaquelThéorèmes récents de convergence plane intrinsèque
-
J. Fine - Knots, minimal surfaces and J-holomorphic curves
FineJoëlI will describe work in progress, parts of which are joint with Marcelo Alves. Let L be a knot or link in the 3-sphere. I will explain how one can count minimal surfaces in hyperbolic 4-space
-
J. Wang - Topological rigidity and positive scalar curvature
WangJianIn this talk, we shall describe some topological rigidity and its relationship with positive scalar curvature. Precisely, we will present a proof that a complete contractible 3-manifold with
-
D. Semola - Boundary regularity and stability under lower Ricci bounds
SemolaDanieleThe theory of non smooth spaces with lower Ricci Curvature bounds has undergone huge developments in the last thirty years. On the one hand the impetus came from Gromov’s precompactness theorem
-
D. Stern - Harmonic map methods in spectral geometry
SternDanielOver the last fifty years, the problem of finding sharp upper bounds for area-normalized Laplacian eigenvalues on closed surfaces has attracted the attention of many geometers, due in part to
-
R. Bamler - Compactness and partial regularity theory of Ricci flows in higher dimensions
BamlerRichard H.We present a new compactness theory of Ricci flows. This theory states that any sequence of Ricci flows that is pointed in an appropriate sense, subsequentially converges to a synthetic flow.
-
P. Burkhardt - Pointwise lower scalar curvature bounds for C0 metrics via regularizing Ricci flow
Burkhardt-GuimPaulaWe propose a class of local definitions of weak lower scalar curvature bounds that is well defined for C0 metrics. We show the following: that our definitions are stable under greater-than-second
-
C. Li - Classifying sufficiently connected PSC manifolds in 4 and 5 dimensions
LiChaoIn this talk, I will discuss some recent developments on the topology of closed manifolds admitting Riemannian metrics of positive scalar curvature. In particular, we will prove if a closed PSC