I. Gentil - Le problème de Schrödinger, un point de vue analytique (Part 2)
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
- audio 1 audio 2 audio 3
Descriptif
Ce cours est divisé en trois parties, le but étant de comprendre le problème de Schrödinger avec un point de vue analytique. Le premier cours porte sur le problème de Schrödinger. C’est un problème de minimisation de l’entropie sur un ensemble de mesures de probabilités sur les trajectoires. Ce problème a été énoncé par Schrödinger lui même dans les années 30. Dans ce premier cours on verra les théorèmes fondamentaux sans forcément entrer dans les preuves techniques.Le deuxième cours porte sur le calcul d’Otto. Ce calcul permet, au moins de façon heuristique, de considérer l’espace des mesures de probabilités (par exemple sur une variété riemannienne) comme une variété riemannienne de dimension infinie. L’intérêt du calcul d’Otto est d’avoir un point de vue flot de gradient d’équations paraboliques classiques. Par exemple, l’équation de la chaleur est le flot de gradient de l’entropie par rapport à la métrique d’Otto. Enfin le dernier cours rapproche Schrödinger et Otto. On montre que les minimiseurs du problème de Schrödinger vérifient une équation de Newton au sens d’Otto. Cette formulation, montrée récemment par G. Conforti, permet de voir le problème de Schrödinger comme la minimisation d’un lagrangien en dimension infinie.
Thèmes
Notice
Documentation
Avec les mêmes intervenants
-
I. Gentil - Le problème de Schrödinger, un point de vue analytique (Part 3)GentilIvan
Ce cours est divisé en trois parties, le but étant de comprendre le problème de Schrödinger avec un point de vue analytique. Le premier cours porte sur le problème de Schrödinger. C’est un
-
I. Gentil - Le problème de Schrödinger, un point de vue analytique (Part 1)GentilIvan
Ce cours est divisé en trois parties, le but étant de comprendre le problème de Schrödinger avec un point de vue analytique. Le premier cours porte sur le problème de Schrödinger. C’est un
-
Ivan Gentil - Inégalités fonctionnelles et applications (Part 4)GentilIvan
Inégalités fonctionnelles et applications
-
Ivan Gentil - Inégalités fonctionnelles et applications (Part 5)GentilIvan
Inégalités fonctionnelles et applications
-
Ivan Gentil - Inégalités fonctionnelles et applications (Part 3)GentilIvan
Inégalités fonctionnelles et applications
-
Ivan Gentil - Inégalités fonctionnelles et applications (Part 2)GentilIvan
Inégalités fonctionnelles et applications
-
Ivan Gentil - Inégalités fonctionnelles et applications (Part 1)GentilIvan
Inégalités fonctionnelles et applications
Sur le même thème
-
J. Fine - Knots, minimal surfaces and J-holomorphic curvesFineJoël
I will describe work in progress, parts of which are joint with Marcelo Alves. Let L be a knot or link in the 3-sphere. I will explain how one can count minimal surfaces in hyperbolic 4-space
-
D. Tewodrose - Limits of Riemannian manifolds satisfying a uniform Kato conditionTewodroseDavid
I will present a joint work with G. Carron and I. Mondello where we study Kato limit spaces. These are metric measure spaces obtained as Gromov-Hausdorff limits of smooth n-dimensional Riemannian
-
D. Stern - Harmonic map methods in spectral geometrySternDaniel
Over the last fifty years, the problem of finding sharp upper bounds for area-normalized Laplacian eigenvalues on closed surfaces has attracted the attention of many geometers, due in part to
-
M. Lesourd - Positive Scalar Curvature on Noncompact Manifolds and the Positive Mass TheoremLesourdMartin
The study of positive scalar curvature on noncompact manifolds has seen significant progress in the last few years. A major role has been played by Gromov's results and conjectures, and in
-
J. Wang - Topological rigidity and positive scalar curvatureWangJian
In this talk, we shall describe some topological rigidity and its relationship with positive scalar curvature. Precisely, we will present a proof that a complete contractible 3-manifold with
-
P. Burkhardt - Pointwise lower scalar curvature bounds for C0 metrics via regularizing Ricci flowBurkhardt-GuimPaula
We propose a class of local definitions of weak lower scalar curvature bounds that is well defined for C0 metrics. We show the following: that our definitions are stable under greater-than-second
-
C. Li - Classifying sufficiently connected PSC manifolds in 4 and 5 dimensionsLiChao
In this talk, I will discuss some recent developments on the topology of closed manifolds admitting Riemannian metrics of positive scalar curvature. In particular, we will prove if a closed PSC
-
D. Semola - Boundary regularity and stability under lower Ricci boundsSemolaDaniele
The theory of non smooth spaces with lower Ricci Curvature bounds has undergone huge developments in the last thirty years. On the one hand the impetus came from Gromov’s precompactness theorem
-
A. Mondino - Time-like Ricci curvature bounds via optimal transportMondinoAndrea
The goal of the talk is to present a recent work in collaboration with Cavalletti (SISSA) on optimal transport in Lorentzian synthetic spaces. The aim is to set up a “Lorentzian analog” of the
-
Y. Lai - A family of 3d steady gradient Ricci solitons that are flying wingsLaiYi
We find a family of 3d steady gradient Ricci solitons that are flying wings. This verifies a conjecture by Hamilton. For a 3d flying wing, we show that the scalar curvature does not vanish at
-
R. Bamler - Compactness and partial regularity theory of Ricci flows in higher dimensionsBamlerRichard H.
We present a new compactness theory of Ricci flows. This theory states that any sequence of Ricci flows that is pointed in an appropriate sense, subsequentially converges to a synthetic flow.
-
R. Perales - Recent Intrinsic Flat Convergence TheoremsPerales AguilarRaquel
Given a closed and oriented manifold M and Riemannian tensors g0, g1, ... on M that satisfy g0 < gj, vol(M, gj)→vol (M, g0) and diam(M, gj)≤D we will see that (M, gj) converges to (M, g0) in the