Notice
I. Gentil - Le problème de Schrödinger, un point de vue analytique (Part 2)
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
Descriptif
Ce cours est divisé en trois parties, le but étant de comprendre le problème de Schrödinger avec un point de vue analytique. Le premier cours porte sur le problème de Schrödinger. C’est un problème de minimisation de l’entropie sur un ensemble de mesures de probabilités sur les trajectoires. Ce problème a été énoncé par Schrödinger lui même dans les années 30. Dans ce premier cours on verra les théorèmes fondamentaux sans forcément entrer dans les preuves techniques.Le deuxième cours porte sur le calcul d’Otto. Ce calcul permet, au moins de façon heuristique, de considérer l’espace des mesures de probabilités (par exemple sur une variété riemannienne) comme une variété riemannienne de dimension infinie. L’intérêt du calcul d’Otto est d’avoir un point de vue flot de gradient d’équations paraboliques classiques. Par exemple, l’équation de la chaleur est le flot de gradient de l’entropie par rapport à la métrique d’Otto. Enfin le dernier cours rapproche Schrödinger et Otto. On montre que les minimiseurs du problème de Schrödinger vérifient une équation de Newton au sens d’Otto. Cette formulation, montrée récemment par G. Conforti, permet de voir le problème de Schrödinger comme la minimisation d’un lagrangien en dimension infinie.
Thème
Documentation
Avec les mêmes intervenants et intervenantes
-
I. Gentil - Le problème de Schrödinger, un point de vue analytique (Part 3)
GENTIL Ivan
Ce cours est divisé en trois parties, le but étant de comprendre le problème de Schrödinger avec un point de vue analytique. Le premier cours porte sur le problème de Schrödinger. C’est un
-
I. Gentil - Le problème de Schrödinger, un point de vue analytique (Part 1)
GENTIL Ivan
Ce cours est divisé en trois parties, le but étant de comprendre le problème de Schrödinger avec un point de vue analytique. Le premier cours porte sur le problème de Schrödinger. C’est un
-
Ivan Gentil - Inégalités fonctionnelles et applications (Part 4)
GENTIL Ivan
Inégalités fonctionnelles et applications
-
Ivan Gentil - Inégalités fonctionnelles et applications (Part 2)
GENTIL Ivan
Inégalités fonctionnelles et applications
-
Ivan Gentil - Inégalités fonctionnelles et applications (Part 5)
GENTIL Ivan
Inégalités fonctionnelles et applications
-
Ivan Gentil - Inégalités fonctionnelles et applications (Part 3)
GENTIL Ivan
Inégalités fonctionnelles et applications
-
Ivan Gentil - Inégalités fonctionnelles et applications (Part 1)
GENTIL Ivan
Inégalités fonctionnelles et applications
Sur le même thème
-
"Le mathématicien Petre (Pierre) Sergescu, historien des sciences, personnalité du XXe siècle"
HERLéA Alexandre
Alexandre HERLEA est membre de la section « Sciences, histoire des sciences et des techniques et archéologie industrielle » du CTHS. Professeur émérite des universités, membre effectif de l'Académie
-
Webinaire sur la rédaction des PGD
LOUVET Violaine
Rédaction des Plans de Gestion de Données (PGD) sous l’angle des besoins de la communauté mathématique.
-
Alexandre Booms : « Usage de matériel pédagogique adapté en géométrie : une transposition à interro…
« Usage de matériel pédagogique adapté en géométrie : une transposition à interroger ». Alexandre Booms, doctorant (Université de Reims Champagne-Ardenne - Cérep UR 4692)
-
J. Wang - Topological rigidity and positive scalar curvature
WANG Jian
In this talk, we shall describe some topological rigidity and its relationship with positive scalar curvature. Precisely, we will present a proof that a complete contractible 3-manifold with
-
R. Perales - Recent Intrinsic Flat Convergence Theorems
PERALES Raquel
Théorèmes récents de convergence plane intrinsèque
-
J. Fine - Knots, minimal surfaces and J-holomorphic curves
FINE Joël
I will describe work in progress, parts of which are joint with Marcelo Alves. Let L be a knot or link in the 3-sphere. I will explain how one can count minimal surfaces in hyperbolic 4-space
-
D. Semola - Boundary regularity and stability under lower Ricci bounds
SEMOLA Daniele
The theory of non smooth spaces with lower Ricci Curvature bounds has undergone huge developments in the last thirty years. On the one hand the impetus came from Gromov’s precompactness theorem
-
D. Stern - Harmonic map methods in spectral geometry
STERN Daniel
Over the last fifty years, the problem of finding sharp upper bounds for area-normalized Laplacian eigenvalues on closed surfaces has attracted the attention of many geometers, due in part to
-
P. Burkhardt - Pointwise lower scalar curvature bounds for C0 metrics via regularizing Ricci flow
BURKHARDT-GUIM Paula
We propose a class of local definitions of weak lower scalar curvature bounds that is well defined for C0 metrics. We show the following: that our definitions are stable under greater-than-second
-
R. Bamler - Compactness and partial regularity theory of Ricci flows in higher dimensions
BAMLER Richard H.
We present a new compactness theory of Ricci flows. This theory states that any sequence of Ricci flows that is pointed in an appropriate sense, subsequentially converges to a synthetic flow.
-
C. Li - Classifying sufficiently connected PSC manifolds in 4 and 5 dimensions
LI Chao
In this talk, I will discuss some recent developments on the topology of closed manifolds admitting Riemannian metrics of positive scalar curvature. In particular, we will prove if a closed PSC
-
Y. Lai - A family of 3d steady gradient Ricci solitons that are flying wings
LAI Yi
We find a family of 3d steady gradient Ricci solitons that are flying wings. This verifies a conjecture by Hamilton. For a 3d flying wing, we show that the scalar curvature does not vanish at