Conférence

R. Berman - Canonical metrics, random point processes and tropicalization

Réalisation : 7 juin 2017 Mise en ligne : 7 juin 2017
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
  • audio 1 audio 2 audio 3
Descriptif

In this talk I will present a survey of the connections between canonical metrics and random point processes on a complex algebraic variety X. When the variety X has positive Kodairadimension, this leads to a probabilistic construction of the canonical metric on X introduced by Tsuji and Song-Tian (coinciding with the Kähler-Einstien metric when X is of general type). In the opposite setting of Fano varieties this suggests a probalistic analog of the Yau-Tian-Donaldson conjecture. The probabilistic version of the conjecture is open, in general. But, as shown in a recent joint work with Magnus Onnheim, for toric X the “tropicalized” version of the conjecture does hold and involves discrete optimal transport theory.

Intervenants
Thèmes
Notice
Langue :
Anglais
Crédits
Jérémy MAGNIEN (Réalisation)
Conditions d'utilisation
CC BY-NC-ND 4.0
Citer cette ressource:
I_Fourier. (2017, 7 juin). R. Berman - Canonical metrics, random point processes and tropicalization. [Vidéo]. Canal-U. https://www.canal-u.tv/95393. (Consultée le 28 mai 2022)
Contacter

Sur le même thème