Notice
Chapitre "Leçons de choses" - Partie 3 : Écrire des mathématiques: LaTeX en cinq minutes
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
Descriptif
Chapitre "Leçons de choses" - Partie 3 : Écrire des mathématiques: LaTeX en cinq minutes
Le langage LaTeX permet de rédiger des textes contenant des formules de maths,
il est aussi accepté sur certains blogs et vous permet d'écrire des maths
dans un cour
Intervention
Thème
Dans la même collection
-
Leçons de choses - partie 5 : formules de trigonométrie circulaire et hyperbolique
BodinArnaudChapitre "Leçons de choses" - Partie 5 : Formules de trigonométrie circulaire et hyperbolique Plan : Formule d'addition ; Passage du circulaire vers hyperbolique ; Formule de la tangente arc-moitié ;
-
Leçons de choses - partie 7 : primitives
BodinArnaudChapitre "Leçons de choses" - Partie 7 : Primitives Le formulaire des primitves à connaître ! Exo7. Cours et exercices de mathématiques pour les étudiants. Retrouvez le polycopié sur http://exo7
-
Chapitre "Leçons de choses" - Partie 2 : L'alphabet grec
Chapitre "Leçons de choses" - Partie 2 : L'alphabet grec L'alphabet grec : à connaître et savoir écrire ! Exo7. Cours et exercices de mathématiques pour les étudiants. Retrouvez le polycopié sur
-
Chapitre "Leçons de choses" - Partie 6 : Développements limités
BodinArnaudBoutinBenjaminRomonPascalChapitre "Leçons de choses" - Partie 6 : Développements limités Le formulaire des développements limités usuels ! Exo7. Cours et exercices de mathématiques pour les étudiants. Retrouvez le polycopié
-
Chapitre "Leçons de choses" - Partie 4 : Formules de trigonométrie : sinus, cosinus, tangente
BodinArnaudVantommeGuyBoutinBenjaminRomonPascalChapitre "Leçons de choses" - Partie 4 : Formules de trigonométrie : sinus, cosinus, tangente Plan : Cercle trigonométrique ; Les fonctions sinus, cosinus, tangente ; Les formules d'additions. Exo7.
Avec les mêmes intervenants et intervenantes
-
Exercice 7 (Courbes planes) [06987]
BodinArnaudBlanc-CentiLéaEtude complète d'une courbe : variations conjointes, tangentes, asymptotes, points singuliers, tracé. Bonus (à 24'02'') : Asymptote. Exo7. Cours et exercices de mathématiques pour les étudiants.
-
Exercice 5 (Equations différentielles) [06995]
BodinArnaudBlanc-CentiLéaRésolutions d'équations différentielles à variables séparées. Bonus (à 16'53'') : Equation à variables séparées. Exo7. Cours et exercices de mathématiques pour les étudiants. Retrouvez la
-
Exercice 2 (Courbes planes) [06982]
BodinArnaudBlanc-CentiLéaCourbes paramétrées et graphes de fonctions. Bonus (à 10'00'') : Paramétrisation d'un graphe. Exo7. Cours et exercices de mathématiques pour les étudiants. Retrouvez la correction écrite sur http:/
-
Exercice 10 (Courbes planes) [06990]
BodinArnaudBlanc-CentiLéaEnsemble de points définis à l'aide du limaçon de Pascal. Bonus (à 19'46'') : Repère de Frenet. Exo7. Cours et exercices de mathématiques pour les étudiants. Retrouvez la correction écrite sur
-
Exercice 8 (Equations différentielles) [06998]
BodinArnaudBlanc-CentiLéaEquations différentielles linéaires du second ordre avec second membre. Bonus (à 15'19'') : Principe de superposition. Exo7. Cours et exercices de mathématiques pour les étudiants. Retrouvez la
-
Exercice 5 (Courbes planes) [06985]
BodinArnaudBlanc-CentiLéaRecherche de points doubles et calcul de tangentes. Bonus (à 13'07'') : Recherche de points doubles. Exo7. Cours et exercices de mathématiques pour les étudiants. Retrouvez la correction écrite sur
-
Exercice 3 (Equations différentielles) [06993]
BodinArnaudBlanc-CentiLéaRésolution d'équations différentielles et tracé de courbes intégrales. Bonus (à 12'43'') : Equations y' = a(x) y ; théorème de Cauchy-Lipschitz. Exo7. Cours et exercices de mathématiques pour les
-
Exercice 11 (Equations différentielles) [07001]
BodinArnaudBlanc-CentiLéaEquation de Bernoulli, équation de Riccati. Bonus (à 20'19'') : Repères historiques sur les équations différentielles. Exo7. Cours et exercices de mathématiques pour les étudiants. Retrouvez la
-
Exercice 8 (Courbes planes) [06988]
BodinArnaudBlanc-CentiLéaDroites à la fois tangentes et orthogonales à une courbe. Bonus (à 18'08'') : Tracé de la courbe. Exo7. Cours et exercices de mathématiques pour les étudiants. Retrouvez la correction écrite sur
-
Exercice 6 (Equations différentielles) [06996]
BodinArnaudBlanc-CentiLéaRecollement de solutions d'équations différentielles. Bonus (à 21'55'') : Un exercice : trouver une équation différentielle connaissant les solutions. Exo7. Cours et exercices de mathématiques pour
-
Exercice 3 (Courbes planes) [06983]
BodinArnaudBlanc-CentiLéaEtude et tracé de trois courbes paramétrées (dont la cycloïde et l'astroïde). Bonus (à 40'32'') : Plan d'étude d'une courbe paramétrée. Exo7. Cours et exercices de mathématiques pour les étudiants.
-
Exercice 1 (Equations différentielles) [06991]
BodinArnaudBlanc-CentiLéaEquations différentielles linéaire du premier ordre, à coefficients constants, avec second membre simple. Bonus (à 21'53'') : Equations y' = ax ; y' = ax + b(c) ; solutions particulières. Exo7.
Sur le même thème
-
"Le mathématicien Petre (Pierre) Sergescu, historien des sciences, personnalité du XXe siècle"
HerléaAlexandreAlexandre HERLEA est membre de la section « Sciences, histoire des sciences et des techniques et archéologie industrielle » du CTHS. Professeur émérite des universités, membre effectif de l'Académie
-
Webinaire sur la rédaction des PGD
LouvetViolaineRédaction des Plans de Gestion de Données (PGD) sous l’angle des besoins de la communauté mathématique.
-
Alexandre Booms : « Usage de matériel pédagogique adapté en géométrie : une transposition à interro…
« Usage de matériel pédagogique adapté en géométrie : une transposition à interroger ». Alexandre Booms, doctorant (Université de Reims Champagne-Ardenne - Cérep UR 4692)
-
D. Semola - Boundary regularity and stability under lower Ricci bounds
SemolaDanieleThe theory of non smooth spaces with lower Ricci Curvature bounds has undergone huge developments in the last thirty years. On the one hand the impetus came from Gromov’s precompactness theorem
-
D. Stern - Harmonic map methods in spectral geometry
SternDanielOver the last fifty years, the problem of finding sharp upper bounds for area-normalized Laplacian eigenvalues on closed surfaces has attracted the attention of many geometers, due in part to
-
Y. Lai - A family of 3d steady gradient Ricci solitons that are flying wings
LaiYiWe find a family of 3d steady gradient Ricci solitons that are flying wings. This verifies a conjecture by Hamilton. For a 3d flying wing, we show that the scalar curvature does not vanish at
-
R. Bamler - Compactness and partial regularity theory of Ricci flows in higher dimensions
BamlerRichard H.We present a new compactness theory of Ricci flows. This theory states that any sequence of Ricci flows that is pointed in an appropriate sense, subsequentially converges to a synthetic flow.
-
C. Li - Classifying sufficiently connected PSC manifolds in 4 and 5 dimensions
LiChaoIn this talk, I will discuss some recent developments on the topology of closed manifolds admitting Riemannian metrics of positive scalar curvature. In particular, we will prove if a closed PSC
-
T. Ozuch - Noncollapsed degeneration and desingularization of Einstein 4-manifolds
OzuchTristanWe study the noncollapsed singularity formation of Einstein 4-manifolds. We prove that any smooth Einstein 4-manifold close to a singular one in a mere Gromov-Hausdorff (GH) sense is the result
-
D. Tewodrose - Limits of Riemannian manifolds satisfying a uniform Kato condition
TewodroseDavidPresentation of a joint work with G. Carron and I. Mondello where we study Kato limit spaces.
-
J. Wang - Topological rigidity and positive scalar curvature
WangJianIn this talk, we shall describe some topological rigidity and its relationship with positive scalar curvature. Precisely, we will present a proof that a complete contractible 3-manifold with
-
A. Mondino - Time-like Ricci curvature bounds via optimal transport
MondinoAndreaThe goal of the talk is to present a recent work in collaboration with Cavalletti (SISSA) on optimal transport in Lorentzian synthetic spaces. The aim is to set up a “Lorentzian analog” of the