Cours/Séminaire

# Giovanni Alberti - Introduction to minimal surfaces and finite perimeter sets (Part 1)

Réalisation : 15 juin 2015 Mise en ligne : 15 juin 2015
• document 1 document 2 document 3
• niveau 1 niveau 2 niveau 3
• audio 1 audio 2 audio 3
Descriptif

In these lectures I will first recall the basic notions and results that are needed to study minimal surfaces in the smooth setting (above all the area formula and the first variation of the area), give a short review of the main (classical) techniques for existence results, and then outline the theory of Finite Perimeter Sets, including the main results of the theory (compactness, structure of distributional derivative, rectifiability). If time allows, I will conclude with a few applications.

Intervenant
Giovanni Alberti

Thème
Notice
Langue :
Anglais
Crédits
Fanny Bastien (Réalisation)
Conditions d'utilisation
CC BY-NC-ND 4.0
Citer cette ressource :
I_Fourier. (2015, 15 juin). Giovanni Alberti - Introduction to minimal surfaces and finite perimeter sets (Part 1). [Vidéo]. Canal-U. https://www.canal-u.tv/59309. (Consultée le 31 janvier 2023)
Contacter
Documentation

## Sur le même thème

• Cours/Séminaire
00:49:00
Webinaire sur la rédaction des PGD
Louvet
Violaine

Rédaction des Plans de Gestion de Données (PGD) sous l’angle des besoins de la communauté mathématique.

• Conférence
01:01:02
J. Fine - Knots, minimal surfaces and J-holomorphic curves
Fine
Joël

I will describe work in progress, parts of which are joint with Marcelo Alves. Let L be a knot or link in the 3-sphere. I will explain how one can count minimal surfaces in hyperbolic 4-space

• Conférence
01:07:59
D. Tewodrose - Limits of Riemannian manifolds satisfying a uniform Kato condition
Tewodrose
David

I will present a joint work with G. Carron and I. Mondello where we study Kato limit spaces. These are metric measure spaces obtained as Gromov-Hausdorff limits of smooth n-dimensional Riemannian

• Conférence
01:00:08
D. Stern - Harmonic map methods in spectral geometry
Stern
Daniel

Over the last fifty years, the problem of finding sharp upper bounds for area-normalized Laplacian eigenvalues on closed surfaces has attracted the attention of many geometers, due in part to

• Conférence
00:28:18
J. Wang - Topological rigidity and positive scalar curvature
Wang
Jian

In this talk, we shall describe some topological rigidity and its relationship with positive scalar curvature. Precisely, we will present a proof that a complete contractible 3-manifold with

• Conférence
01:03:34
C. Li - Classifying sufficiently connected PSC manifolds in 4 and 5 dimensions
Li
Chao

In this talk, I will discuss some recent developments on the topology of closed manifolds admitting Riemannian metrics of positive scalar curvature. In particular, we will prove if a closed PSC

• Conférence
01:02:13
D. Semola - Boundary regularity and stability under lower Ricci bounds
Semola
Daniele

The theory of non smooth spaces with lower Ricci Curvature bounds has undergone huge developments in the last thirty years. On the one hand the impetus came from Gromov’s precompactness theorem

• Conférence
01:14:44
A. Mondino - Time-like Ricci curvature bounds via optimal transport
Mondino
Andrea

The goal of the talk is to present a recent work in collaboration with Cavalletti (SISSA) on optimal transport in Lorentzian synthetic spaces. The aim is to set up a “Lorentzian analog” of the

• Conférence
01:02:33
Y. Lai - A family of 3d steady gradient Ricci solitons that are flying wings
Lai
Yi

We find a family of 3d steady gradient Ricci solitons that are flying wings. This verifies a conjecture by Hamilton. For a 3d flying wing, we show that the scalar curvature does not vanish at