Cours

Yoshihiro Tonegawa - Analysis on the mean curvature flow and the reaction-diffusion approximation (Part 2)

Réalisation : 16 juin 2015 Mise en ligne : 16 juin 2015
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
  • audio 1 audio 2 audio 3
Descriptif

The course covers two separate but closely related topics. The first topic is the mean curvature flow in the framework of GMT due to Brakke. It is a flow of varifold moving by the generalized mean curvature. Starting from a quick review on the necessary tools and facts from GMT and the definition of the Brakke mean curvature flow, I will give an overview on the proof of the local regularity theorem. The second topic is the reaction-diffusion approximation of phase boundaries with key words such as the Modica-Mortola functional and the Allen-Cahn equation. Their singular perturbation problems are related to objects such as minimal surfaces and mean curvature flows in the framework of GMT.

Thèmes
Notice
Langue :
Anglais
Crédits
Fanny Bastien (Réalisation)
Conditions d'utilisation
CC BY-NC-ND 4.0
Citer cette ressource:
I_Fourier. (2015, 16 juin). Yoshihiro Tonegawa - Analysis on the mean curvature flow and the reaction-diffusion approximation (Part 2). [Vidéo]. Canal-U. https://www.canal-u.tv/86409. (Consultée le 20 mai 2022)
Contacter
Documentation

Dans la même collection

Sur le même thème