Notice
S. Filip - K3 surfaces and Dynamics (Part 1)
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
Descriptif
K3 surfaces provide a meeting ground for geometry (algebraic, differential), arithmetic, and dynamics. I hope to discuss: Basic definitions and examples
- Geometry (algebraic, differential, etc.) of complex surfaces
- Torelli theorems for K3 surfaces
- Dynamics on K3s (Cantat, McMullen)
- Analogies with flat surfaces
- (time permitting) Integral-affine structures
Dans la même collection
-
A. Zorich - Counting simple closed geodesics and volumes of moduli spaces (Part 3)
ZorichAntonIn the first two lectures I will try to tell (or, rather, to give an idea) of how Maryam Mirzakhani has counted simple closed geodesics on hyperbolic surfaces. I plan to briefly mention her
-
A. Zorich - Counting simple closed geodesics and volumes of moduli spaces (Part 1)
ZorichAntonIn the first two lectures I will try to tell (or, rather, to give an idea) of how Maryam Mirzakhani has counted simple closed geodesics on hyperbolic surfaces. I plan to briefly mention her
-
Ö. Yurttas - Algorithms for multicurves with Dynnikov coordinates
YurttasÖyküMulticurves have played a fundamental role in the study of mapping class groups of surfaces since the work of Dehn. A beautiful method of describing such systems on the n-punctured disk is given by
-
S.Schleimer - An introduction to veering triangulations
SchleimerSaulSingular euclidean structures on surfaces are a key tool in the study of the mapping class group, of Teichmüller space, and of kleinian three-manifolds. François Guéritaud, while studying work of Ian
-
C.Fougeron - Diffusion rate for windtree models
FougeronCharlesRecent results on windtree models with polygonal obstacles have linked their diffusion rate with Lyapunov exponents in stata of quadratic differentials. The proves of these theorems follow from the
-
A. Wright - Mirzakhani's work on Earthquakes (Part 3)
WrightAlexanderWe will give the proof of Mirzakhani's theorem that the earthquake flow and Teichmuller unipotent flow are measurably isomorphic. We will assume some familiarity with quadratic differentials, but no
-
-
D. Davis - Periodic paths on the pentagon
DavisDianaMathematicians have long understood periodic trajectories on the square billiard table. In the present work, we describe periodic trajectories on the regular pentagon – their geometry, symbolic
-
J. Smillie - Horocycle dynamics (Part 2)
SmillieJohnA major challenge in dynamics on moduli spaces is to understand the behavior of the horocycle flow. We will motivate this problem and discuss what is known and what is not known about it, focusing on
-
P. Hubert - Rauzy gasket, Arnoux-Yoccoz interval exchange map, Novikov's problem (Part 2)
HubertPascal1. Symbolic dynamics: Arnoux - Rauzy words and Rauzy gasket 2. Topology: Arnoux - Yoccoz example and its generalization 3. Novikov’s problem: how dynamics meets topology and together they help to
-
P. Apisa - Marked points in genus two and beyond
ApisaPaulIn the principal stratum in genus two, McMullen observed that something odd happens - there is only one nonarithmetic Teichmuller curve - the one generated by the decagon. This strange phenomenon
-
Avec les mêmes intervenants et intervenantes
-
S. Filip - K3 surfaces and Dynamics (Part 2)
SimionFilipK3 surfaces provide a meeting ground for geometry (algebraic, differential), arithmetic, and dynamics. I hope to discuss: - Basic definitions and examples - Geometry (algebraic, differential, etc.) of
-
S. Filip - K3 surfaces and Dynamics (Part 3)
SimionFilipK3 surfaces provide a meeting ground for geometry (algebraic, differential), arithmetic, and dynamics. I hope to discuss: - Basic definitions and examples - Geometry (algebraic, differential, etc.) of
Sur le même thème
-
"Le mathématicien Petre (Pierre) Sergescu, historien des sciences, personnalité du XXe siècle"
HerléaAlexandreAlexandre HERLEA est membre de la section « Sciences, histoire des sciences et des techniques et archéologie industrielle » du CTHS. Professeur émérite des universités, membre effectif de l'Académie
-
Webinaire sur la rédaction des PGD
LouvetViolaineRédaction des Plans de Gestion de Données (PGD) sous l’angle des besoins de la communauté mathématique.
-
Alexandre Booms : « Usage de matériel pédagogique adapté en géométrie : une transposition à interro…
« Usage de matériel pédagogique adapté en géométrie : une transposition à interroger ». Alexandre Booms, doctorant (Université de Reims Champagne-Ardenne - Cérep UR 4692)
-
M. Lesourd - Positive Scalar Curvature on Noncompact Manifolds and the Positive Mass Theorem
LesourdMartinThe study of positive scalar curvature on noncompact manifolds has seen significant progress in the last few years. A major role has been played by Gromov's results and conjectures, and in
-
P. Burkhardt - Pointwise lower scalar curvature bounds for C0 metrics via regularizing Ricci flow
Burkhardt-GuimPaulaWe propose a class of local definitions of weak lower scalar curvature bounds that is well defined for C0 metrics. We show the following: that our definitions are stable under greater-than-second
-
R. Perales - Recent Intrinsic Flat Convergence Theorems
PeralesRaquelThéorèmes récents de convergence plane intrinsèque
-
J. Fine - Knots, minimal surfaces and J-holomorphic curves
FineJoëlI will describe work in progress, parts of which are joint with Marcelo Alves. Let L be a knot or link in the 3-sphere. I will explain how one can count minimal surfaces in hyperbolic 4-space
-
D. Semola - Boundary regularity and stability under lower Ricci bounds
SemolaDanieleThe theory of non smooth spaces with lower Ricci Curvature bounds has undergone huge developments in the last thirty years. On the one hand the impetus came from Gromov’s precompactness theorem
-
Y. Lai - A family of 3d steady gradient Ricci solitons that are flying wings
LaiYiWe find a family of 3d steady gradient Ricci solitons that are flying wings. This verifies a conjecture by Hamilton. For a 3d flying wing, we show that the scalar curvature does not vanish at
-
D. Stern - Harmonic map methods in spectral geometry
SternDanielOver the last fifty years, the problem of finding sharp upper bounds for area-normalized Laplacian eigenvalues on closed surfaces has attracted the attention of many geometers, due in part to
-
R. Bamler - Compactness and partial regularity theory of Ricci flows in higher dimensions
BamlerRichard H.We present a new compactness theory of Ricci flows. This theory states that any sequence of Ricci flows that is pointed in an appropriate sense, subsequentially converges to a synthetic flow.
-
C. Li - Classifying sufficiently connected PSC manifolds in 4 and 5 dimensions
LiChaoIn this talk, I will discuss some recent developments on the topology of closed manifolds admitting Riemannian metrics of positive scalar curvature. In particular, we will prove if a closed PSC