Cours/Séminaire
Notice
Langue :
Anglais
Crédits
Fanny Bastien (Réalisation), András Vasy (Intervention)
Conditions d'utilisation
CC BY-NC-ND 4.0
DOI : 10.60527/xw18-z303
Citer cette ressource :
András Vasy. I_Fourier. (2016, 12 mai). Andras Vasy - The Feynman propagator and its positivity properties. [Vidéo]. Canal-U. https://doi.org/10.60527/xw18-z303. (Consultée le 15 septembre 2024)

Andras Vasy - The Feynman propagator and its positivity properties

Réalisation : 12 mai 2016 - Mise en ligne : 25 mai 2016
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
Descriptif

One usually considers wave equations as evolution equations, i.e. imposes initial data and solves them. Equivalently, one can consider the forward and backward solution operators for the wave equation; these solve an equation Lu=f" style="position: relative;" tabindex="0" id="MathJax-Element-1-Frame">Lu=f, for say f" style="position: relative;" tabindex="0" id="MathJax-Element-2-Frame">f compactly supported, by demanding that u" style="position: relative;" tabindex="0" id="MathJax-Element-3-Frame">u is supported at points which are reachable by forward, respectively backward, time-like or light-like curves. This property corresponds to causality. But it has been known for a long time that in certain settings, such as Minkowski space, there are other ways of solving wave equations, namely the Feynman and anti-Feynman solution operators (propagators). I will explain a general setup in which all of these propagators are inverses of the wave operator on appropriate function spaces, and also mention positivity properties, and the connection to spectral and scattering theory in Riemannian settings, as well as to the classical parametrix construction of Duistermaat and Hörmander.

Intervention

Avec les mêmes intervenants et intervenantes

Sur le même thème