Cours/Séminaire
Notice
Langue :
Anglais
Crédits
Fanny Bastien (Réalisation), András Vasy (Intervention)
Conditions d'utilisation
CC BY-NC-ND 4.0
DOI : 10.60527/xw18-z303
Citer cette ressource :
András Vasy. I_Fourier. (2016, 12 mai). Andras Vasy - The Feynman propagator and its positivity properties. [Vidéo]. Canal-U. https://doi.org/10.60527/xw18-z303. (Consultée le 15 septembre 2024)

# Andras Vasy - The Feynman propagator and its positivity properties

Réalisation : 12 mai 2016 - Mise en ligne : 25 mai 2016
• document 1 document 2 document 3
• niveau 1 niveau 2 niveau 3
Descriptif

One usually considers wave equations as evolution equations, i.e. imposes initial data and solves them. Equivalently, one can consider the forward and backward solution operators for the wave equation; these solve an equation Lu=f" style="position: relative;" tabindex="0" id="MathJax-Element-1-Frame">Lu=f, for say f" style="position: relative;" tabindex="0" id="MathJax-Element-2-Frame">f compactly supported, by demanding that u" style="position: relative;" tabindex="0" id="MathJax-Element-3-Frame">u is supported at points which are reachable by forward, respectively backward, time-like or light-like curves. This property corresponds to causality. But it has been known for a long time that in certain settings, such as Minkowski space, there are other ways of solving wave equations, namely the Feynman and anti-Feynman solution operators (propagators). I will explain a general setup in which all of these propagators are inverses of the wave operator on appropriate function spaces, and also mention positivity properties, and the connection to spectral and scattering theory in Riemannian settings, as well as to the classical parametrix construction of Duistermaat and Hörmander.

Intervention
Thème
Documentation

## Avec les mêmes intervenants et intervenantes

• Cours/Séminaire
02:09:12

### Andras Vasy - Microlocal analysis and wave propagation (Part 1)

Vasy
András

In these lectures I will explain the basics of microlocal analysis, emphasizing non elliptic problems, such as wave propagation, both on

• Conférence
23:59:59

### Andras Vasy - Quasilinear waves and trapping: Kerr­‐de Sitter space

Vasy
András

In this talk I will describe recent work with Peter Hintz on globally solving quasilinear wave equations in the presence of trapped rays,

## Sur le même thème

• Conférence
01:06:10

### "Le mathématicien Petre (Pierre) Sergescu, historien des sciences, personnalité du XXe siècle"

Herléa
Alexandre

Alexandre HERLEA est membre de la section « Sciences, histoire des sciences et des techniques et archéologie industrielle » du CTHS. Professeur émérite des universités, membre effectif de l'Académie

• Cours/Séminaire
00:49:00

### Webinaire sur la rédaction des PGD

Louvet
Violaine

Rédaction des Plans de Gestion de Données (PGD) sous l’angle des besoins de la communauté mathématique.

• Conférence
00:33:54

### Alexandre Booms : « Usage de matériel pédagogique adapté en géométrie : une transposition à interro…

« Usage de matériel pédagogique adapté en géométrie : une transposition à interroger ». Alexandre Booms, doctorant (Université de Reims Champagne-Ardenne - Cérep UR 4692)

• Conférence
01:03:34

### C. Li - Classifying sufficiently connected PSC manifolds in 4 and 5 dimensions

Li
Chao

In this talk, I will discuss some recent developments on the topology of closed manifolds admitting Riemannian metrics of positive scalar curvature. In particular, we will prove if a closed PSC

• Conférence
01:02:33

### Y. Lai - A family of 3d steady gradient Ricci solitons that are flying wings

Lai
Yi

We find a family of 3d steady gradient Ricci solitons that are flying wings. This verifies a conjecture by Hamilton. For a 3d flying wing, we show that the scalar curvature does not vanish at

• Conférence
01:03:54

### T. Ozuch - Noncollapsed degeneration and desingularization of Einstein 4-manifolds

Ozuch
Tristan

We study the noncollapsed singularity formation of Einstein 4-manifolds. We prove that any smooth Einstein 4-manifold close to a singular one in a mere Gromov-Hausdorff (GH) sense is the result

• Conférence
01:07:59

### D. Tewodrose - Limits of Riemannian manifolds satisfying a uniform Kato condition

Tewodrose
David

Presentation of a joint work with G. Carron and I. Mondello where we study Kato limit spaces.

• Conférence
01:14:44

### A. Mondino - Time-like Ricci curvature bounds via optimal transport

Mondino
Andrea

The goal of the talk is to present a recent work in collaboration with Cavalletti (SISSA) on optimal transport in Lorentzian synthetic spaces. The aim is to set up a “Lorentzian analog” of the

• Conférence
01:15:11

### M. Lesourd - Positive Scalar Curvature on Noncompact Manifolds and the Positive Mass Theorem

Lesourd
Martin

The study of positive scalar curvature on noncompact manifolds has seen significant progress in the last few years. A major role has been played by Gromov's results and conjectures, and in

• Conférence
00:28:18

### J. Wang - Topological rigidity and positive scalar curvature

Wang
Jian

In this talk, we shall describe some topological rigidity and its relationship with positive scalar curvature. Precisely, we will present a proof that a complete contractible 3-manifold with

• Conférence
00:54:15

### R. Perales - Recent Intrinsic Flat Convergence Theorems

Perales
Raquel

Théorèmes récents de convergence plane intrinsèque

• Conférence
01:01:02

### J. Fine - Knots, minimal surfaces and J-holomorphic curves

Fine
Joël

I will describe work in progress, parts of which are joint with Marcelo Alves. Let L be a knot or link in the 3-sphere. I will explain how one can count minimal surfaces in hyperbolic 4-space