Cours/Séminaire
Notice
Langue :
Anglais
Crédits
Fanny Bastien (Réalisation), Richard Montgomery (Intervention)
Conditions d'utilisation
CC BY-NC-ND 4.0
DOI : 10.60527/h8g8-nx43
Citer cette ressource :
Richard Montgomery. I_Fourier. (2019, 7 mars). Richard Montgomery - Oscillating about coplanarity in the 4 body problem. [Vidéo]. Canal-U. https://doi.org/10.60527/h8g8-nx43. (Consultée le 15 septembre 2024)

Richard Montgomery - Oscillating about coplanarity in the 4 body problem

Réalisation : 7 mars 2019 - Mise en ligne : 22 mars 2019
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
Descriptif

For the Newtonian 4-body problem in space we prove that any zero angular momentum bounded solution suffers infinitely many coplanar instants, that is, times at which all 4 bodies lie in the same plane. This result generalizes a known result for collinear instants ("syzygies") in the zero angular momentum planar 3-body problem, and extends to the d+1 body problem in d-space. The proof, for d=3, starts by identifying the center-of-mass zero configuration space with real 3×3 matrices, the coplanar configurations with matrices whose determinant is zero, and the mass metric with the Frobenius (standard Euclidean) norm. Let S denote the signed distance from a matrix to the hypersurface of matrices with determinant zero. The proof hinges on establishing a harmonic oscillator type ODE for S along solutions. Bounds on inter-body distances then yield an explicit lower bound ω for the frequency of this oscillator, guaranteeing a degeneration within every time interval of length π/ω. The non-negativity of the curvature of oriented shape space (the quotient of configuration space by the rotation group) plays a crucial role in the proof.

Intervention

Sur le même thème