Notice
1.3. DNA codes for genetic information
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
Descriptif
Remember at the heart of any cell,there is this very long molecule which is called a macromolecule for this reason, which is the DNA molecule. Now we will see that DNA molecules support what is called the "genetic information". So, DNAcodes for genetic information. How? If you consider this doublestrand molecule, DNA molecule, you remember that on each strandof the molecule, there is a succession of nucleotides. You can follow these nucleotides and write their name or moreexactly the initial of their name. And you will get what we call the sequence". Look: C, T, A and so on. The process by which you obtain this sequence of characters of letters from the DNA moleculesis called "sequencing". This is a biochemical object. This is a symbolic object which canbe analysed by computer algorithms. Some points of vocabulary here. What is a genome? The genome is,at the same time, first the DNA molecule itself as thesupport of genetic information. This DNA molecule can be organized into chromosome, plasmid, segment and so on. It means thatmost of the time, it is not in one piece only, but in severalpieces, several chromosomes, plasmids, segments and so on.
Thème
Documentation
Dans la même collection
-
1.5. Counting nucleotides
RECHENMANN François
In this session, don't panic. We will design our first algorithm. This algorithm is forcounting nucleotides. The idea here is that as an input,you have a sequence of nucleotides, of bases, of letters,
-
1.8. Compressing the DNA walk
RECHENMANN François
We have written the algorithm for the circle DNA walk. Just a precision here: the kind of drawing we get has nothing to do with the physical drawing of the DNA molecule. It is a symbolic
-
1.2. At the heart of the cell: the DNA macromolecule
RECHENMANN François
During the last session, we saw how at the heart of the cell there's DNA in the nucleus, sometimes of cells, or directly in the cytoplasm of the bacteria. The DNA is what we call a macromolecule, that
-
1.6. GC and AT contents of DNA sequence
RECHENMANN François
We have designed our first algorithmfor counting nucleotides. Remember, what we have writtenin pseudo code is first declaration of variables. We have several integer variables that are variables which
-
1.9. Predicting the origin of DNA replication?
RECHENMANN François
We have seen a nice algorithm to draw, let's say, a DNA sequence. We will see that first, we have to correct a little bit this algorithm. And then we will see how such as imple algorithm can provide
-
1.4. What is an algorithm?
RECHENMANN François
We have seen that a genomic textcan be indeed a very long sequence of characters. And to interpret this sequence of characters, we will need to use computers. Using computers means writing program.
-
1.7. DNA walk
RECHENMANN François
We will now design a more graphical algorithm which is called "the DNA walk". We shall see what does it mean "DNA walk". Walk on to DNA. Something like that, yes. But first, just have a look again at
-
1.1. The cell, atom of the living world
RECHENMANN François
Welcome to this introduction to bioinformatics. We will speak of genomes and algorithms. More specifically, we will see how genetic information can be analysed by algorithms. In these five weeks to
-
1.10. Overlapping sliding window
RECHENMANN François
We have made some drawings along a genomic sequence. And we have seen that although the algorithm is quite simple, even if some points of the algorithmare bit trickier than the others, we were able to
Avec les mêmes intervenants et intervenantes
-
1.1. The cell, atom of the living world
RECHENMANN François
Welcome to this introduction to bioinformatics. We will speak of genomes and algorithms. More specifically, we will see how genetic information can be analysed by algorithms. In these five weeks to
-
1.10. Overlapping sliding window
RECHENMANN François
We have made some drawings along a genomic sequence. And we have seen that although the algorithm is quite simple, even if some points of the algorithmare bit trickier than the others, we were able to
-
2.3. The genetic code
RECHENMANN François
Genes code for proteins. What is the correspondence betweenthe genes, DNA sequences, and the structure of proteins? The correspondence isthe genetic code. Proteins have indeedsequences of amino acids.
-
3.6. Boyer-Moore algorithm
RECHENMANN François
We have seen how we can make gene predictions more reliable through searching for all the patterns,all the occurrences of patterns. We have seen, for example, howif we locate the RBS, Ribosome
-
4.5. A sequence alignment as a path
RECHENMANN François
Comparing two sequences and thenmeasuring their similarities is an optimization problem. Why? Because we have seen thatwe have to take into account substitution and deletion. During the alignment, the
-
5.5. Differences are not always what they look like
RECHENMANN François
The algorithm we have presented works on an array of distance between sequences. These distances are evaluated on the basis of differences between the sequences. The problem is that behind the
-
1.5. Counting nucleotides
RECHENMANN François
In this session, don't panic. We will design our first algorithm. This algorithm is forcounting nucleotides. The idea here is that as an input,you have a sequence of nucleotides, of bases, of letters,
-
2.4. A translation algorithm
RECHENMANN François
We have seen that the genetic codeis a correspondence between the DNA or RNA sequences and aminoacid sequences that is proteins. Our aim here is to design atranslation algorithm, we make the
-
3.1. All genes end on a stop codon
RECHENMANN François
Last week we studied genes and proteins and so how genes, portions of DNA, are translated into proteins. We also saw the very fast evolutionof the sequencing technology which allows for producing
-
3.9. Benchmarking the prediction methods
RECHENMANN François
It is necessary to underline that gene predictors produce predictions. Predictions mean that you have no guarantees that the coding sequences, the coding regions,the genes you get when applying your
-
4.2. Why gene/protein sequences may be similar?
RECHENMANN François
Before measuring the similaritybetween the sequences, it's interesting to answer the question: why gene or protein sequences may be similar? It is indeed veryinteresting because the answer is related
-
5.4. The UPGMA algorithm
RECHENMANN François
We know how to fill an array with the values of the distances between sequences, pairs of sequences which are available in the file. This array of distances will be the input of our algorithm for