# Canal-U

Mon compte

## Sylvain Maillot - An introduction to open 3-manifolds (Part 4)

Copier le code pour partager la vidéo :
<div style="position:relative;padding-bottom:56.25%;padding-top:10px;height:0;overflow:hidden;"><iframe src="https://www.canal-u.tv/video/institut_fourier/embed.1/sylvain_maillot_an_introduction_to_open_3_manifolds_part_4.24354?width=100%&amp;height=100%" style="position:absolute;top:0;left:0;width:100%;height: 100%;" width="550" height="306" frameborder="0" allowfullscreen scrolling="no"></iframe></div> Si vous souhaitez partager une séquence, indiquez le début de celle-ci , et copiez le code : h m s
Auteur(s) :
MAILLOT Sylvain

Producteur Canal-U :
Institut Fourier
Contacter le contributeur
J’aime
Imprimer
partager

### Sylvain Maillot - An introduction to open 3-manifolds (Part 4)

W. Thurston's geometrization program has lead to manyoutstanding results in 3-manifold theory. Thanks to worksof G. Perelman, J. Kahn and V. Markovic, D. Wise, and I. Agol among others, compact 3-manifolds can now beconsidered to be reasonably well-understood.By contrast, noncompact 3-manifolds remainmuch more mysterious. There is a series of examples,beginning with work of L. Antoine and J. H. C. Whitehead,which show that open 3-manifolds can exhibit wildbehavior at infinity. No comprehensive structure theoryanalogous to geometrization à la Thurston is currently availablefor these objects

In these lectures, we will focus on two aspects of the subject:

(1) constructing interesting examples, and

(2) finding sufficientconditions that rule out exotic examples, in particular inconnection with Riemannian geometry.

## commentaires

Ajouter un commentaire Lire les commentaires
*Les champs suivis d’un astérisque sont obligatoires.
Aucun commentaire sur cette vidéo pour le moment (les commentaires font l’objet d’une modération)