Langue :
Conditions d'utilisation
Citer cette ressource :
I_Fourier. (2016, 30 juin). Robert Haslhofer - The moduli space of 2-convex embedded spheres , in 2016. [Vidéo]. Canal-U. (Consultée le 8 décembre 2023)

Robert Haslhofer - The moduli space of 2-convex embedded spheres

Réalisation : 30 juin 2016 - Mise en ligne : 30 juin 2016
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3

We investigate the topology of the space of smoothly embedded n-spheres in R^{n+1}, i.e. the quotient space M_n:=Emb(S^n,R^{n+1})/Diff(S^n). By Hatcher’s proof of the Smale conjecture, M_2 is contractible. This is a highly nontrivial theorem generalizing in particular the Schoenflies theorem and Cerf’s theorem.In this talk, I will explain how geometric analysis can be used to study the topology of M_n respectively some of its variants.I will start by sketching a proof of Smale’s theorem that M_1 is contractible. By a beautiful theorem of Grayson, the curve shortening flow deforms any closed embedded curve in the plane to a round circle, and thus gives a geometric analytic proof of the fact that M_1 is path-connected. By flowing, roughly speaking, all curves simultaneously, one can improve path-connectedness to contractibility.In the second half of my talk, I’ll describe recent work on space of smoothly embedded spheres in the 2-convex case, i.e. when the sum of the two smallest principal curvatures is positive. Our main theorem (joint with Buzano and Hershkovits) proves that this space is path-connected, for every n. The proof uses mean curvature flow with surgery.

Dans la même collection

Sur le même thème