Notice
Robert Haslhofer - The moduli space of 2-convex embedded spheres
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
Descriptif
We investigate the topology of the space of smoothly embedded n-spheres in R^{n+1}, i.e. the quotient space M_n:=Emb(S^n,R^{n+1})/Diff(S^n). By Hatcher’s proof of the Smale conjecture, M_2 is contractible. This is a highly nontrivial theorem generalizing in particular the Schoenflies theorem and Cerf’s theorem.In this talk, I will explain how geometric analysis can be used to study the topology of M_n respectively some of its variants.I will start by sketching a proof of Smale’s theorem that M_1 is contractible. By a beautiful theorem of Grayson, the curve shortening flow deforms any closed embedded curve in the plane to a round circle, and thus gives a geometric analytic proof of the fact that M_1 is path-connected. By flowing, roughly speaking, all curves simultaneously, one can improve path-connectedness to contractibility.In the second half of my talk, I’ll describe recent work on space of smoothly embedded spheres in the 2-convex case, i.e. when the sum of the two smallest principal curvatures is positive. Our main theorem (joint with Buzano and Hershkovits) proves that this space is path-connected, for every n. The proof uses mean curvature flow with surgery.
Thème
Dans la même collection
-
Robert Young - Quantitative rectifiability and differentiation in the Heisenberg group
YoungRobert Kehoe.(joint work with Assaf Naor) The Heisenberg group $\mathbb{H}$ is a sub-Riemannian manifold that is unusually difficult to embed in $\mathbb{R}^n$. Cheeger and Kleiner introduced a new notion of
-
Vincent Beffara - Percolation of random nodal lines
BeffaraVincentPercolation of random nodal lines
-
Melanie Rupflin - Horizontal curves of metrics and applications to geometric flows
RupflinMelanieOn closed surfaces there are three basic ways to evolve a metric, by conformal change, by pull-back with diffeomorphisms and by horizontal curves, moving orthogonally to the first two types of
-
Jeff Viaclovsky - Deformation theory of scalar-flat Kahler ALE surfaces
ViaclovskyJeffI will discuss a Kuranishi-type theorem for deformations of complex structure on ALE Kahler surfaces, which will be used to prove that for any scalar-flat Kahler ALE surface, all small deformations of
-
Burkhard Wilking - Manifolds with almost nonnegative curvature operator
WilkingBurkhardWe show that n-manifolds with a lower volume bound v and upper diameter bound D whose curvature operator is bounded below by $-\varepsilon(n,v,D)$ also admit metrics with nonnegative curvature
-
Jean-Marc Schlenker - Anti-de Sitter geometry and polyhedra inscribed in quadrics
SchlenkerJean-MarcAnti-de Sitter geometry is a Lorentzian analog of hyperbolic geometry. In the last 25 years a number of connections have emerged between 3-dimensional anti-de Sitter geometry and the geometry of
-
Stéphane Saboureau - Sweep-outs, width estimates and volume
SabourauStéphaneSweep-out techniques in geometry and topology have recently received a great deal of attention, leading to major breakthroughs. In this talk, we will present several width estimates relying on min-max
-
Igor Belegradek - Smoothness of Minkowski sum and generic rotations
BelegradekIgorI will discuss whether the Minkowski sum of two compact convex bodies can be made smoother by a generic rotation of one of them. Here "generic" is understood in the sense of Baire category. The main
-
Feng Luo - Discrete conformal geometry of polyhedral surfaces and its convergence
LuoFengOur recent joint work with D. Gu established a discrete version of the uniformization theorem for compact polyhedral surfaces. In this talk, we prove that discrete uniformizaton maps converge to
-
Greg McShane - Volumes of hyperbolics manifolds and translation distances
Schlenker and Krasnov have established a remarkable Schlaffli-type formula for the (renormalized) volume of a quasi-Fuchsian manifold. Using this, some classical results in complex analysis and Gromov
-
David Gabai - Maximal cusps of low volume
GabaiDavidWith Robert Haraway, Robert Meyerhoff, Nathaniel Thurston and Andrew Yarmola. We address the following question. What are all the 1-cusped hyperbolic 3-manifolds whose maximal cusps have low volume?
-
Genevieve Walsh - Boundaries of Kleinian groups
WalshG.R.We study the problem of classifying Kleinian groups via the topology of their limit sets. In particular, we are interested in one-ended convex-cocompact Kleinian groups where each piece in the JSJ
Sur le même thème
-
"Le mathématicien Petre (Pierre) Sergescu, historien des sciences, personnalité du XXe siècle"
HerléaAlexandreAlexandre HERLEA est membre de la section « Sciences, histoire des sciences et des techniques et archéologie industrielle » du CTHS. Professeur émérite des universités, membre effectif de l'Académie
-
Webinaire sur la rédaction des PGD
LouvetViolaineRédaction des Plans de Gestion de Données (PGD) sous l’angle des besoins de la communauté mathématique.
-
Alexandre Booms : « Usage de matériel pédagogique adapté en géométrie : une transposition à interro…
« Usage de matériel pédagogique adapté en géométrie : une transposition à interroger ». Alexandre Booms, doctorant (Université de Reims Champagne-Ardenne - Cérep UR 4692)
-
J. Fine - Knots, minimal surfaces and J-holomorphic curves
FineJoëlI will describe work in progress, parts of which are joint with Marcelo Alves. Let L be a knot or link in the 3-sphere. I will explain how one can count minimal surfaces in hyperbolic 4-space
-
D. Tewodrose - Limits of Riemannian manifolds satisfying a uniform Kato condition
TewodroseDavidPresentation of a joint work with G. Carron and I. Mondello where we study Kato limit spaces.
-
D. Stern - Harmonic map methods in spectral geometry
SternDanielOver the last fifty years, the problem of finding sharp upper bounds for area-normalized Laplacian eigenvalues on closed surfaces has attracted the attention of many geometers, due in part to
-
M. Lesourd - Positive Scalar Curvature on Noncompact Manifolds and the Positive Mass Theorem
LesourdMartinThe study of positive scalar curvature on noncompact manifolds has seen significant progress in the last few years. A major role has been played by Gromov's results and conjectures, and in
-
J. Wang - Topological rigidity and positive scalar curvature
WangJianIn this talk, we shall describe some topological rigidity and its relationship with positive scalar curvature. Precisely, we will present a proof that a complete contractible 3-manifold with
-
P. Burkhardt - Pointwise lower scalar curvature bounds for C0 metrics via regularizing Ricci flow
Burkhardt-GuimPaulaWe propose a class of local definitions of weak lower scalar curvature bounds that is well defined for C0 metrics. We show the following: that our definitions are stable under greater-than-second
-
D. Semola - Boundary regularity and stability under lower Ricci bounds
SemolaDanieleThe theory of non smooth spaces with lower Ricci Curvature bounds has undergone huge developments in the last thirty years. On the one hand the impetus came from Gromov’s precompactness theorem
-
C. Li - Classifying sufficiently connected PSC manifolds in 4 and 5 dimensions
LiChaoIn this talk, I will discuss some recent developments on the topology of closed manifolds admitting Riemannian metrics of positive scalar curvature. In particular, we will prove if a closed PSC
-
A. Mondino - Time-like Ricci curvature bounds via optimal transport
MondinoAndreaThe goal of the talk is to present a recent work in collaboration with Cavalletti (SISSA) on optimal transport in Lorentzian synthetic spaces. The aim is to set up a “Lorentzian analog” of the