Canal-U

Mon compte
Inria

4.3. Distinguisher for GRS codes


Copier le code pour partager la vidéo :
<div style="position:relative;padding-bottom:56.25%;padding-top:10px;height:0;overflow:hidden;"><iframe src="https://www.canal-u.tv/video/inria/embed.1/4_3_distinguisher_for_grs_codes.32927?width=100%&amp;height=100%" style="position:absolute;top:0;left:0;width:100%;height: 100%;" width="550" height="306" frameborder="0" allowfullscreen scrolling="no"></iframe></div> Si vous souhaitez partager une séquence, indiquez le début de celle-ci , et copiez le code : h m s
Auteur(s) :
MARQUEZ-CORBELLA Irene
SENDRIER Nicolas
FINIASZ Matthieu

Producteur Canal-U :
Inria
Contacter la chaine
J’aime
Imprimer
partager facebook twitter

4.3. Distinguisher for GRS codes

In this session we will see that generalized Reed-Solomon codes behave differently than random codes with respect to the star operation. Thus we can define a distinguisher for Generalized Reed-Solomon codes. Let us recall the definition of Generalized Reed-Solomon codes. We will need an n-tuple of mutually distinct elements of Fq. We need a vector b which is an n-tuple of nonzero elements of Fq. We need to define the vector space of all polynomials of degree at most k and we also need to define a evaluation map. Then the Generalized Reed-Solomon codes of dimension k, associated with a pair (a,b) is the evaluation of all polynomials of degree at most k at the pair (a,b). The element a is called code locator and the element b is called the column multiplier. Let us see some properties of Generalized Reed-Solomon codes. The Generalized Reed-Solomon codes is an MDS code that is its error correction performance is optimal. Moreover, the dual of a Generalized Reed-Solomon code is also a Generalized Reed-Solomon code, in particular the dual of a Generalized Reed-Solomon code of dimension k defined by the pair (a,b) is a Generalized Reed-Solomon code of dimension n-k defined by the same code locator but some non zero vector b.

  •  
    Label UNT : UNIT
  •  
    Date de réalisation : 5 Mai 2015
    Durée du programme : 6 min
    Classification Dewey : Analyse numérique, Théorie de l'information, données dans les systèmes informatiques, cryptographie, Mathématiques
  •  
    Catégorie : Vidéocours
    Niveau : niveau Master (LMD), niveau Doctorat (LMD), Recherche
    Disciplines : Mathématiques, Informatique, Informatique, Mathématiques et informatique
    Collections : 4: Key Attacks
    ficheLom : Voir la fiche LOM
  •  
    Auteur(s) : MARQUEZ-CORBELLA Irene, SENDRIER Nicolas, FINIASZ Matthieu
  •  
    Langue : Anglais
    Mots-clés : algèbre linéaire, chiffrement à clé publique, cryptage des données, cryptographie, code correcteur, algorithmes, GRS code
    Conditions d’utilisation / Copyright : Ces ressources de cours sont, sauf mention contraire, diffusées sous Licence Creative Commons. L’utilisateur doit mentionner le nom de l’auteur, il peut exploiter l’œuvre sauf dans un contexte commercial et il ne peut apporter de modifications à l’œuvre originale.
 

commentaires


Ajouter un commentaire Lire les commentaires
*Les champs suivis d’un astérisque sont obligatoires.
Aucun commentaire sur cette vidéo pour le moment (les commentaires font l’objet d’une modération)
 

Dans la même collection

FMSH
 
Facebook Twitter
Mon Compte