5.4. Parallel-CFS
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
- audio 1 audio 2 audio 3
Descriptif
In this session, I willpresent a variant of the CFS signature scheme calledparallel-CFS. We start from a simple question: whathappens if you try to use two different hash functions andcompute two different CFS signatures? For the signer, you simplytake twice as much computation because you have todo two signatures. And then, the signature istwice longer because you have just to concatenate two signatures. One would assume that forthe attacker it is the same, he simply has to forge two signatures. Well, things are a littlemore complicated than that. What happens when you want to dodecoding one out of many twice in a row? So, you start with a set ofN documents and compute the hashes of these documents tobuild a list of target syndromes. As we have seen, if N =2^(mt/3), one solution is found on average. Then, we canmove on to the second hash function and try to doalso decoding one out of many. The only problem is, youonly have one solution with the first hash function. So,you only have one target document for the secondproblem and you cannot do decoding one out of many anymore. In order to be able to do decoding one out of manytwice in a row, you need to start from a muchlarger list of syndromes. Then, find a set ofsolutions instead of just a single solution and use this setof solutions to find one solution to both hashfunctions at the time. This means that the set oftarget syndromes has to be larger and the complexityof the attack will be larger. We have just seen thatfor the attacker, computing syndrome decoding twice ina row is more complicated. But the same kind ofproblem happens to the legitimate signer when using counters.The first strategy would be first, pick a document D,use the first hash function to compute a signature, thiswill get the value of the counter i; then, use h' tocompute the second signature with a second valueof the counter i'.
Intervenants
Thèmes
Notice
Documentation
Dans la même collection
-
5.7. The Fast Syndrome-Based (FSB) Hash FunctionMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
In the last session of this week, we will have a look at the FSB Hash Function which is built using the one-way function we saw in the previous session. What are the requirements for a
-
5.5. Stern’s Zero-Knowledge Identification SchemeMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
In this session, we are going to have a look at Stern’s Zero-Knowledge Identification Scheme. So, what is a Zero-Knowledge Identification Scheme? An identification scheme allows a prover to prove
-
5.6. An Efficient Provably Secure One-Way FunctionMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
In this session, we are going to see how to build an efficient provably secure one-way function from coding theory. As you know, a one-way function is a function which is simple to evaluate and
-
5.3. Attacks against the CFS SchemeMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
In this session, we will have a look at the attacks against the CFS signature scheme. As for public-key encryption, there are two kinds of attacks against signature schemes. First kind of attack is
-
5.1. Code-Based Digital SignaturesMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
Welcome to the last week of this MOOC on code-based cryptography. This week, we will be discussing other cryptographic constructions relying on coding theory. We have seen how to do public key
-
5.2. The Courtois-Finiasz-Sendrier (CFS) ConstructionMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
In this session, I am going to present the Courtois-Finiasz-Sendrier Construction of a code-based digital signature. In the previous session, we have seen that it is impossible to hash a document
Avec les mêmes intervenants
-
5.7. The Fast Syndrome-Based (FSB) Hash FunctionMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
In the last session of this week, we will have a look at the FSB Hash Function which is built using the one-way function we saw in the previous session. What are the requirements for a
-
5.5. Stern’s Zero-Knowledge Identification SchemeMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
In this session, we are going to have a look at Stern’s Zero-Knowledge Identification Scheme. So, what is a Zero-Knowledge Identification Scheme? An identification scheme allows a prover to prove
-
5.6. An Efficient Provably Secure One-Way FunctionMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
In this session, we are going to see how to build an efficient provably secure one-way function from coding theory. As you know, a one-way function is a function which is simple to evaluate and
-
5.3. Attacks against the CFS SchemeMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
In this session, we will have a look at the attacks against the CFS signature scheme. As for public-key encryption, there are two kinds of attacks against signature schemes. First kind of attack is
-
5.2. The Courtois-Finiasz-Sendrier (CFS) ConstructionMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
In this session, I am going to present the Courtois-Finiasz-Sendrier Construction of a code-based digital signature. In the previous session, we have seen that it is impossible to hash a document
-
5.1. Code-Based Digital SignaturesMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
Welcome to the last week of this MOOC on code-based cryptography. This week, we will be discussing other cryptographic constructions relying on coding theory. We have seen how to do public key
-
4.8. Attack against Algebraic Geometry codesMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
In this session, we will present an attack against Algebraic Geometry codes (AG codes). Algebraic Geometry codes is determined by a triple. First of all, an algebraic curve of genus g, then a n
-
4.9. Goppa codes still resistMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
All the results that we have seen this week doesn't mean that code based cryptography is broken. So in this session we will see that Goppa code still resists to all these attacks. So recall that
-
4.7. Attack against Reed-Muller codesMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
In this session, we will introduce an attack against binary Reed-Muller codes. Reed-Muller codes were introduced by Muller in 1954 and, later, Reed provided the first efficient decoding algorithm
-
4.5. Error-Correcting PairsMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
We present in this session a general decoding method for linear codes. And we will see it in an example. Let C be a generalized Reed-Solomon code of dimension k associated to the pair (c, d). Then,
-
4.6. Attack against GRS codesMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
In this session we will discuss the proposal of using generalized Reed-Solomon codes for the McEliece cryptosystem. As we have already said, generalized Reed-Solomon codes were proposed in 1986 by
-
4.4. Attack against subcodes of GRS codesMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
In this session, we will talk about using subcodes of a Generalized Reed–Solomon code for the McEliece Cryptosystem. Recall that to avoid the attack of Sidelnikov and Shestakov, Berger and
Sur le même thème
-
-
An Introduction to Iris: Higher-Order Concurrent Separation LogicBirkedalLars
Modern programming languages such as Java, Scala, and Rust are examples of concurrent higher-order imperative programming languages.
-
Opinion polarization and network segregation. Modelling a complex RelationshipFlacheAndreas
Recently, many societies seem to shift towards more polarization and volatility in opinions, for example in attitudes about immigration, climate policy, or the best policy response to Covid-19. A
-
21 Molecular Algorithms Using Reprogrammable DNA Self-AssemblyWoodsDamien
The history of computing tells us that computers can be made of almost anything: silicon, gears and levers, neurons, flowing water, interacting particles or even light. Although lithographically
-
Topological insights in neuroscienceHess BellwaldKathryn
Over the past decade, and particularly over the past five years, research at the interface of topology and neuroscience has grown remarkably fast. Topology has, for example, been successfully applied
-
Quelques algorithmes de calcul d'enveloppe convexe en 2DGiraultAlain
Le calcul de l'enveloppe convexe d'un nuage de points est un des problèmes fondamentaux en informatique, avec des applications multiples : traitement d'images, reconstruction 3D, détection de
-
Modélisation de la croissance des micro-organismesJongHidde de
La croissance microbienne peut être formulée comme un problème d'optimisation : comment allouer les ressources nutritives extraites de l'environnement aux différentes fonctions cellulaires afin de
-
Les mathématiques et la physique dans les effets spéciaux et les jeux vidéoNeyretFabrice
La synthèse d’images (parfois appelée « la 3D ») permet de créer dans l’ordinateur des mondes fictifs, ultra-réalistes ou de style cartoon selon l’envie des graphistes, des réalisateurs, des
-
Caches, montrez-vous !DurandMarie
Les processeurs actuels permettent de l'ordre de quelques tera-opérations par seconde. Puissance nécessaire pour soutenir les besoins en simulation numérique, qui constitue, après la théorie et l
-
Théorie de l’appariement et applications actuelles
Pourquoi y a-t-il tant de personnes sans emploi alors qu’au même moment un grand nombre de postes sont disponibles ? La théorie de l’appariement analyse ces problèmes où un certain nombre de
-
Self-Supervised Visual Learning and SynthesisEfrosAlexei A.
Computer vision has made impressive gains through the use of deep learning models, trained with large-scale labeled data. However, labels require expertise and curation and are expensive to collect.
-
Theoretical Foundations for Runtime MonitoringAcetoLuca
Runtime monitoring/verification is a lightweight technique that complements other verification methods in a multi-pronged approach towards ensuring software correctness. The technique poses novel