5.2. The Courtois-Finiasz-Sendrier (CFS) Construction
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
- audio 1 audio 2 audio 3
Descriptif
In this session, I amgoing to present the Courtois-Finiasz-SendrierConstruction of a code-based digital signature. In the previous session,we have seen that it is impossible to hash adocument into decodable syndromes. But it is possible to hashonto the space of all syndromes. The document is not always decodable. And we are going to see twotechniques to work around this problem. The first technique is toadd a counter to the document. This way, we hash both thecounter and the document and obtain a hash which is tied toboth the document and the counter. We increment the counter untila decodable syndrome is found. The signature is thedecoding of the syndrome but also contains the counter which isrequired for the verification. The second method is toperform complete decoding. Complete decoding is theidea of being able to decode any syndrome in the space. Andfor this, we need to modify the decoding algorithm.The idea is to add some exhaustive search tothe decoding algorithm. For example, if we want todecode one more error in the decoding capacity of thecode, we simply do an exhaustive search on one position. Add this errorto the syndrome and try to decode it. We can do the same with twoerrors or up to δ errors by doing a search on δ positions. This way, we can reach thecovering radius, which is the number of errors we need tocorrect to decode any element in the syndrome space. Both techniques are expensive. Decodable syndromes musthave high enough density in the space of all syndromes. Thecovering radius and decoding capacity must beclose to one another. If they are too distant,it will be too expensive to perform complete decoding. What are the requirements forcode-based digital signatures? As for a public-keyencryption, we need to be able to keep the decoding algorithm secret. So, we need codes where it ispossible to hide the structure efficiently. Binary Goppa codes areone of very few candidates. And so, we will use thisin the construction, exactly like in the original McEliece scheme. Then, to have someefficient signature schemes, we need the highest possibledensity of decodable syndromes.
Intervenants
Thèmes
Notice
Documentation
Dans la même collection
-
5.7. The Fast Syndrome-Based (FSB) Hash FunctionMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
In the last session of this week, we will have a look at the FSB Hash Function which is built using the one-way function we saw in the previous session. What are the requirements for a
-
5.5. Stern’s Zero-Knowledge Identification SchemeMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
In this session, we are going to have a look at Stern’s Zero-Knowledge Identification Scheme. So, what is a Zero-Knowledge Identification Scheme? An identification scheme allows a prover to prove
-
5.6. An Efficient Provably Secure One-Way FunctionMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
In this session, we are going to see how to build an efficient provably secure one-way function from coding theory. As you know, a one-way function is a function which is simple to evaluate and
-
5.4. Parallel-CFSMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
In this session, I will present a variant of the CFS signature scheme called parallel-CFS. We start from a simple question: what happens if you try to use two different hash functions and compute
-
5.3. Attacks against the CFS SchemeMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
In this session, we will have a look at the attacks against the CFS signature scheme. As for public-key encryption, there are two kinds of attacks against signature schemes. First kind of attack is
-
5.1. Code-Based Digital SignaturesMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
Welcome to the last week of this MOOC on code-based cryptography. This week, we will be discussing other cryptographic constructions relying on coding theory. We have seen how to do public key
Avec les mêmes intervenants
-
5.7. The Fast Syndrome-Based (FSB) Hash FunctionMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
In the last session of this week, we will have a look at the FSB Hash Function which is built using the one-way function we saw in the previous session. What are the requirements for a
-
5.5. Stern’s Zero-Knowledge Identification SchemeMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
In this session, we are going to have a look at Stern’s Zero-Knowledge Identification Scheme. So, what is a Zero-Knowledge Identification Scheme? An identification scheme allows a prover to prove
-
5.6. An Efficient Provably Secure One-Way FunctionMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
In this session, we are going to see how to build an efficient provably secure one-way function from coding theory. As you know, a one-way function is a function which is simple to evaluate and
-
5.4. Parallel-CFSMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
In this session, I will present a variant of the CFS signature scheme called parallel-CFS. We start from a simple question: what happens if you try to use two different hash functions and compute
-
5.3. Attacks against the CFS SchemeMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
In this session, we will have a look at the attacks against the CFS signature scheme. As for public-key encryption, there are two kinds of attacks against signature schemes. First kind of attack is
-
5.1. Code-Based Digital SignaturesMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
Welcome to the last week of this MOOC on code-based cryptography. This week, we will be discussing other cryptographic constructions relying on coding theory. We have seen how to do public key
-
4.8. Attack against Algebraic Geometry codesMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
In this session, we will present an attack against Algebraic Geometry codes (AG codes). Algebraic Geometry codes is determined by a triple. First of all, an algebraic curve of genus g, then a n
-
4.9. Goppa codes still resistMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
All the results that we have seen this week doesn't mean that code based cryptography is broken. So in this session we will see that Goppa code still resists to all these attacks. So recall that
-
4.7. Attack against Reed-Muller codesMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
In this session, we will introduce an attack against binary Reed-Muller codes. Reed-Muller codes were introduced by Muller in 1954 and, later, Reed provided the first efficient decoding algorithm
-
4.5. Error-Correcting PairsMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
We present in this session a general decoding method for linear codes. And we will see it in an example. Let C be a generalized Reed-Solomon code of dimension k associated to the pair (c, d). Then,
-
4.6. Attack against GRS codesMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
In this session we will discuss the proposal of using generalized Reed-Solomon codes for the McEliece cryptosystem. As we have already said, generalized Reed-Solomon codes were proposed in 1986 by
-
4.4. Attack against subcodes of GRS codesMarquez-CorbellaIreneSendrierNicolasFiniaszMatthieu
In this session, we will talk about using subcodes of a Generalized Reed–Solomon code for the McEliece Cryptosystem. Recall that to avoid the attack of Sidelnikov and Shestakov, Berger and
Sur le même thème
-
Une minute avec Emmanuelle SaillardSaillardEmmanuelle
1 une minute avec ... met à l'honneur les scientifiques et les personnels d'appuis à la recherche du Centre Inria de l'université de Bordeaux. Grâce à ce nouveau format, le monde de la recherche n
-
Une minute avec Clément FoyerFoyerClément
1 une minute avec ... met à l'honneur les scientifiques et les personnels d'appuis à la recherche du Centre Inria de l'université de Bordeaux. Grâce à ce nouveau format, le monde de la recherche n
-
Désassemblons le numérique - #Episode1 : plongée au cœur des donnéesProuzeauArnaud
Ce premier épisode de Désassemblons le numérique part à la rencontre d'Arnaud Prouzeau, chercheur au sein de l'équipe-projet Potioc du Centre Inria de l'université de Bordeaux. Arnaud oriente ses
-
-
An Introduction to Iris: Higher-Order Concurrent Separation LogicBirkedalLars
Modern programming languages such as Java, Scala, and Rust are examples of concurrent higher-order imperative programming languages.
-
Opinion polarization and network segregation. Modelling a complex RelationshipFlacheAndreas
Recently, many societies seem to shift towards more polarization and volatility in opinions, for example in attitudes about immigration, climate policy, or the best policy response to Covid-19. A
-
21 Molecular Algorithms Using Reprogrammable DNA Self-AssemblyWoodsDamien
The history of computing tells us that computers can be made of almost anything: silicon, gears and levers, neurons, flowing water, interacting particles or even light. Although lithographically
-
Topological insights in neuroscienceHess BellwaldKathryn
Over the past decade, and particularly over the past five years, research at the interface of topology and neuroscience has grown remarkably fast. Topology has, for example, been successfully applied
-
Quelques algorithmes de calcul d'enveloppe convexe en 2DGiraultAlain
Le calcul de l'enveloppe convexe d'un nuage de points est un des problèmes fondamentaux en informatique, avec des applications multiples : traitement d'images, reconstruction 3D, détection de
-
Modélisation de la croissance des micro-organismesJongHidde de
La croissance microbienne peut être formulée comme un problème d'optimisation : comment allouer les ressources nutritives extraites de l'environnement aux différentes fonctions cellulaires afin de
-
Les mathématiques et la physique dans les effets spéciaux et les jeux vidéoNeyretFabrice
La synthèse d’images (parfois appelée « la 3D ») permet de créer dans l’ordinateur des mondes fictifs, ultra-réalistes ou de style cartoon selon l’envie des graphistes, des réalisateurs, des
-
Caches, montrez-vous !DurandMarie
Les processeurs actuels permettent de l'ordre de quelques tera-opérations par seconde. Puissance nécessaire pour soutenir les besoins en simulation numérique, qui constitue, après la théorie et l