Canal-U

Mon compte
Inria

4.9. Goppa codes still resist


Copier le code pour partager la vidéo :
<div style="position:relative;padding-bottom:56.25%;padding-top:10px;height:0;overflow:hidden;"><iframe src="https://www.canal-u.tv/video/inria/embed.1/4_9_goppa_codes_still_resist.32955?width=100%&amp;height=100%" style="position:absolute;top:0;left:0;width:100%;height: 100%;" width="550" height="306" frameborder="0" allowfullscreen scrolling="no"></iframe></div> Si vous souhaitez partager une séquence, indiquez le début de celle-ci , et copiez le code : h m s
Auteur(s) :
MARQUEZ-CORBELLA Irene
SENDRIER Nicolas
FINIASZ Matthieu

Producteur Canal-U :
Inria
Contacter le contributeur
J’aime
Imprimer
partager facebook twitter Google +

4.9. Goppa codes still resist

All the results that we have seen this week doesn't mean that code based cryptography is broken. So in this session we will see that Goppa code still resists to all these attacks. So recall that it is assumed that Goppa codes are pseudorandom, that is there exist no efficient distinguisher for Goppa code. An efficient distinguisher was built for the case of high rate codes, where the rate is very close to 1, but no generalization of this distinguisher is known. The best known attacks are based on the Support Splitting Algorithm and have exponential runtime. In the third session of this week, we have seen that Generalized Reed-Solomon codes behave differently than random codes, with respect to the square product that is the dimension of the square of a Generalized Reed-Solomon code is very small compared to what it's expected for a random code of the same length and dimension. Since an alternant code is a subfield subcode of a Generalized Reed-Solomon code, we might suspect that the star product of alternant codes also behave differently from random codes. As we will see, this is true but just for a very few cases. The following proposition shows that the star product of two alternant codes is another alternant code and the proof is very easy. We just need to recall that alternant codes are subfield subcodes of Generalized Reed Solomon code. So how works this proof? Let c1 be a codeword of an alternant code and c2 be another codeword of a different alternant code with the same support. Then, there exist two polynomials of degree smaller than n-s and another polynomial of degree smaller than n-r such that the evaluation of these polynomials at the corresponding elements give our codewords.

  •  
    Label UNT : UNIT
  •  
    Date de réalisation : 5 Mai 2015
    Durée du programme : 5 min
    Classification Dewey : Analyse numérique, Théorie de l'information, données dans les systèmes informatiques, cryptographie, Mathématiques
  •  
    Catégorie : Vidéocours
    Niveau : niveau Master (LMD), niveau Doctorat (LMD), Recherche
    Disciplines : Mathématiques, Informatique, Informatique, Mathématiques et informatique
    Collections : 4: Key Attacks
    ficheLom : Voir la fiche LOM
  •  
    Auteur(s) : MARQUEZ-CORBELLA Irene, SENDRIER Nicolas, FINIASZ Matthieu
  •  
    Langue : Anglais
    Mots-clés : algèbre linéaire, chiffrement à clé publique, cryptage des données, cryptographie, code correcteur, algorithmes, GRS code
    Conditions d’utilisation / Copyright : Ces ressources de cours sont, sauf mention contraire, diffusées sous Licence Creative Commons. L’utilisateur doit mentionner le nom de l’auteur, il peut exploiter l’œuvre sauf dans un contexte commercial et il ne peut apporter de modifications à l’œuvre originale.
 

commentaires


Ajouter un commentaire Lire les commentaires
*Les champs suivis d’un astérisque sont obligatoires.
Aucun commentaire sur cette vidéo pour le moment (les commentaires font l’objet d’une modération)
 

Dans la même collection

FMSH
 
Facebook Twitter Google+
Mon Compte