-
- Date de réalisation : 18 Juin 2015
- Durée du programme : 86 min
- Classification Dewey : Mathématiques
-
- Catégorie : Cours magistraux
- Niveau : niveau Doctorat (LMD), Recherche
- Disciplines : Géométrie
- Collections : Ecoles d'été, 2015
- ficheLom : Voir la fiche LOM
-
- Auteur(s) : Tonegawa Yoshihiro
- Réalisateur(s) : Bastien Fanny
-
- Langue : Anglais
- Mots-clés : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
- Conditions d’utilisation / Copyright : CC BY-NC-ND 4.0

Yoshihiro Tonegawa - Analysis on the mean curvature flow and the reaction-diffusion approximation (Part 5)
Dans la même collection
























Yoshihiro Tonegawa - Analysis on the mean curvature flow and the reaction-diffusion approximation (Part 5)
The course covers two separate but closely related topics. The first topic is the mean curvature flow in the framework of GMT due to Brakke. It is a flow of varifold moving by the generalized mean curvature. Starting from a quick review on the necessary tools and facts from GMT and the definition of the Brakke mean curvature flow, I will give an overview on the proof of the local regularity theorem. The second topic is the reaction-diffusion approximation of phase boundaries with key words such as the Modica-Mortola functional and the Allen-Cahn equation. Their singular perturbation problems are related to objects such as minimal surfaces and mean curvature flows in the framework of GMT.
commentaires
Ajouter un commentaire Lire les commentaires