Cours

Alexander Gorodnik - Diophantine approximation and flows on homogeneous spaces (Part 1)

Réalisation : 24 juin 2013 Mise en ligne : 24 juin 2013
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
  • audio 1 audio 2 audio 3
Descriptif

The fundamental problem in the theory of Diophantine approximation is to understand how well points in the Euclidean space can be approximated by rational vectors with given bounds on denominators. It turns out that Diophantine properties of points can be encoded using flows on homogeneous spaces, and in this course we explain how to use techniques from the theory of dynamical systems to address some of questions in Diophantine approximation. In particular, we give a dynamical proof of Khinchin’s theorem and discuss Sprindzuk’s question regarding Diophantine approximation with dependent quantities, which was solved using non-divergence properties of unipotent flows. In conclusion we explore the problem of Diophantine approximation on more general algebraic varieties.

Discipline :
Langue :
Anglais
Crédits
Fanny Bastien (Réalisation)
Conditions d'utilisation
CC BY-NC-ND 4.0
Citer cette ressource:
I_Fourier. (2013, 24 juin). Alexander Gorodnik - Diophantine approximation and flows on homogeneous spaces (Part 1). [Vidéo]. Canal-U. https://www.canal-u.tv/86701. (Consultée le 24 janvier 2022)
Contacter

Dans la même collection

Sur le même thème