Karma Dajani - An introduction to Ergodic Theory of Numbers (Part 3)
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
- audio 1 audio 2 audio 3
Descriptif
In this course we give an introduction to the ergodic theory behind common number expansions, like expansions to integer and non-integer bases, Luroth series and continued fraction expansion. Starting with basic ideas in ergodic theory such as ergodicity, the ergodic theorem and natural extensions, we apply these to the familiar expansions mentioned above in order to understand the structure and global behaviour of different number theoretic expansions, and to obtain new and old results in an elegant and straightforward manner.
Thème
Notice
Documentation
Liens
Dans la même collection
-
Christiane Frougny - Systèmes de numération et automates (Part 2)
Automates finis et langages rationnels de mots finis • Automates finis et mots infinis • Systèmes de numération à base réelle • Nombres de Pisot, nombres de Parry et nombres de Perron • Systèmes
-
-
Alexander Gorodnik - Diophantine approximation and flows on homogeneous spaces (Part 3)
The fundamental problem in the theory of Diophantine approximation is to understand how well points in the Euclidean space can be approximated by rational vectors with given bounds on
-
-
-
Christiane Frougny - Systèmes de numération et automates (Part 1)FrougnyChristiane
Automates finis et langages rationnels de mots finis • Automates finis et mots infinis • Systèmes de numération à base réelle • Nombres de Pisot, nombres de Parry et nombres de Perron • Systèmes
-
Alexander Gorodnik - Diophantine approximation and flows on homogeneous spaces (Part 2)
The fundamental problem in the theory of Diophantine approximation is to understand how well points in the Euclidean space can be approximated by rational vectors with given bounds on
-
-
-
-
Mike Boyle - Nonnegative matrices : Perron Frobenius theory and related algebra (Part 4)BoyleMike
Lecture I. I’ll give a complete elementary presentation of the essential features of the Perron Frobenius theory of nonnegative matrices for the central case of primitive matrices (the "Perron"
-
Marie-José Bertin - Des nombres de Salem à la mesure de Mahler de surfaces K3 (Part 4)BertinMarie-José
Le récent article de McMullen « Dynamics with small entropy on projective K3 surfaces » éclaire d’un jour nouveau les nombres de Salem. Ces entiers algébriques gardent cependant tout leur
Sur le même thème
-
Webinaire sur la rédaction des PGDLouvetViolaine
Rédaction des Plans de Gestion de Données (PGD) sous l’angle des besoins de la communauté mathématique.
-
Alexandre Booms : « Usage de matériel pédagogique adapté en géométrie : une transposition à interro…
« Usage de matériel pédagogique adapté en géométrie : une transposition à interroger ». Alexandre Booms, doctorant (Université de Reims Champagne-Ardenne - Cérep UR 4692)
-
J. Fine - Knots, minimal surfaces and J-holomorphic curvesFineJoël
I will describe work in progress, parts of which are joint with Marcelo Alves. Let L be a knot or link in the 3-sphere. I will explain how one can count minimal surfaces in hyperbolic 4-space
-
D. Tewodrose - Limits of Riemannian manifolds satisfying a uniform Kato conditionTewodroseDavid
I will present a joint work with G. Carron and I. Mondello where we study Kato limit spaces. These are metric measure spaces obtained as Gromov-Hausdorff limits of smooth n-dimensional Riemannian
-
D. Stern - Harmonic map methods in spectral geometrySternDaniel
Over the last fifty years, the problem of finding sharp upper bounds for area-normalized Laplacian eigenvalues on closed surfaces has attracted the attention of many geometers, due in part to
-
M. Lesourd - Positive Scalar Curvature on Noncompact Manifolds and the Positive Mass TheoremLesourdMartin
The study of positive scalar curvature on noncompact manifolds has seen significant progress in the last few years. A major role has been played by Gromov's results and conjectures, and in
-
P. Burkhardt - Pointwise lower scalar curvature bounds for C0 metrics via regularizing Ricci flowBurkhardt-GuimPaula
We propose a class of local definitions of weak lower scalar curvature bounds that is well defined for C0 metrics. We show the following: that our definitions are stable under greater-than-second
-
J. Wang - Topological rigidity and positive scalar curvatureWangJian
In this talk, we shall describe some topological rigidity and its relationship with positive scalar curvature. Precisely, we will present a proof that a complete contractible 3-manifold with
-
D. Semola - Boundary regularity and stability under lower Ricci boundsSemolaDaniele
The theory of non smooth spaces with lower Ricci Curvature bounds has undergone huge developments in the last thirty years. On the one hand the impetus came from Gromov’s precompactness theorem
-
C. Li - Classifying sufficiently connected PSC manifolds in 4 and 5 dimensionsLiChao
In this talk, I will discuss some recent developments on the topology of closed manifolds admitting Riemannian metrics of positive scalar curvature. In particular, we will prove if a closed PSC
-
A. Mondino - Time-like Ricci curvature bounds via optimal transportMondinoAndrea
The goal of the talk is to present a recent work in collaboration with Cavalletti (SISSA) on optimal transport in Lorentzian synthetic spaces. The aim is to set up a “Lorentzian analog” of the
-
Y. Lai - A family of 3d steady gradient Ricci solitons that are flying wingsLaiYi
We find a family of 3d steady gradient Ricci solitons that are flying wings. This verifies a conjecture by Hamilton. For a 3d flying wing, we show that the scalar curvature does not vanish at