Christiane Frougny - Systèmes de numération et automates (Part 1)
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
- audio 1 audio 2 audio 3
Descriptif
Automates finis et langages rationnels de mots finis • Automates finis et mots infinis • Systèmes de numération à base réelle • Nombres de Pisot, nombres de Parry et nombres de Perron • Systèmes de numération définis par une suite
Thèmes
Notice
Documentation
Liens
Dans la même collection
-
Christiane Frougny - Systèmes de numération et automates (Part 2)
Automates finis et langages rationnels de mots finis • Automates finis et mots infinis • Systèmes de numération à base réelle • Nombres de Pisot, nombres de Parry et nombres de Perron • Systèmes
-
-
Alexander Gorodnik - Diophantine approximation and flows on homogeneous spaces (Part 3)
The fundamental problem in the theory of Diophantine approximation is to understand how well points in the Euclidean space can be approximated by rational vectors with given bounds on
-
-
-
Alexander Gorodnik - Diophantine approximation and flows on homogeneous spaces (Part 2)
The fundamental problem in the theory of Diophantine approximation is to understand how well points in the Euclidean space can be approximated by rational vectors with given bounds on
-
-
-
-
Mike Boyle - Nonnegative matrices : Perron Frobenius theory and related algebra (Part 4)BoyleMike
Lecture I. I’ll give a complete elementary presentation of the essential features of the Perron Frobenius theory of nonnegative matrices for the central case of primitive matrices (the "Perron"
-
Marie-José Bertin - Des nombres de Salem à la mesure de Mahler de surfaces K3 (Part 4)BertinMarie-José
Le récent article de McMullen « Dynamics with small entropy on projective K3 surfaces » éclaire d’un jour nouveau les nombres de Salem. Ces entiers algébriques gardent cependant tout leur
-
Sur le même thème
-
F. Andreatta - The height of CM points on orthogonal Shimura varieties and Colmez conjecture (part5)AndreattaFabrizio
We will first introduce Shimura varieties of orthogonal type, their Heegner divisors and some special points, called CM (Complex Multiplication) points. Secondly we will review conjectures of
-
G.Freixas i Montplet - Automorphic forms and arithmetic intersections (part 3)Freixas i MontpletGérard
In these lectures I will focus on the Riemann-Roch theorem in Arakelov geometry, in the specific context of some simple Shimura varieties. For suitable data, the cohomological part of the theorem
-
F. Andreatta - The height of CM points on orthogonal Shimura varieties and Colmez conjecture (part4)AndreattaFabrizio
We will first introduce Shimura varieties of orthogonal type, their Heegner divisors and some special points, called CM (Complex Multiplication) points. Secondly we will review conjectures of
-
G. Freixas i Montplet - Automorphic forms and arithmetic intersections (part 2)Freixas i MontpletGérard
In these lectures I will focus on the Riemann-Roch theorem in Arakelov geometry, in the specific context of some simple Shimura varieties. For suitable data, the cohomological part of the theorem
-
F. Andreatta - The height of CM points on orthogonal Shimura varieties and Colmez conjecture (part3)AndreattaFabrizio
We will first introduce Shimura varieties of orthogonal type, their Heegner divisors and some special points, called CM (Complex Multiplication) points. Secondly we will review conjectures of
-
J. Bruinier et J. Ignacio Burgos Gil - Arakelov theory on Shimura varieties (part2)BruinierJan HendrikBurgos GilJosé Ignacio
A Shimura variety is a higher-dimensional analogue of a modular curve that arises as a quotient of a Hermitian symmetric space by a congruence subgroup of a reductive algebraic group defined over
-
F. Andreatta - The height of CM points on orthogonal Shimura varieties and Colmez conjecture (part2)AndreattaFabrizio
We will first introduce Shimura varieties of orthogonal type, their Heegner divisors and some special points, called CM (Complex Multiplication) points. Secondly we will review conjectures of
-
J. Bruinier et J. Ignacio Burgos Gil - Arakelov theory on Shimura varieties (part1)BruinierJan HendrikBurgos GilJosé Ignacio
A Shimura variety is a higher-dimensional analogue of a modular curve that arises as a quotient of a Hermitian symmetric space by a congruence subgroup of a reductive algebraic group defined over
-
F. Andreatta - The height of CM points on orthogonal Shimura varieties and Colmez conjecture (part1)AndreattaFabrizio
We will first introduce Shimura varieties of orthogonal type, their Heegner divisors and some special points, called CM (Complex Multiplication) points. Secondly we will review conjectures of
-
A. Chambert-Loir - Equidistribution theorems in Arakelov geometry and Bogomolov conjecture (part4)Chambert-LoirAntoine
Let X be an algebraic curve of genus g⩾2 embedded in its Jacobian variety J. The Manin-Mumford conjecture (proved by Raynaud) asserts that X contains only finitely many points of finite order.
-
E. Peyre - Slopes and distribution of points (part4)PeyreEmmanuel
The distribution of rational points of bounded height on algebraic varieties is far from uniform. Indeed the points tend to accumulate on thin subsets which are images of non-trivial finite
-
R. Dujardin - Some problems of arithmetic origin in complex dynamics and geometry (part3)DujardinRomain
Some themes inspired from number theory have been playing an important role in holomorphic and algebraic dynamics (iteration of rational mappings) in the past ten years. In these lectures I would