Notice
Andras Vasy - Microlocal analysis and wave propagation (Part 3)
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
Descriptif
In these lectures I will explain the basics of microlocal analysis, emphasizing non elliptic problems, such as wave propagation, both on manifolds without boundary, and on manifolds with boundary. In the latter case there is no `standard' algebra of differential, or pseudodifferential, operators; I will discuss two important frameworks: Melrose's totally characteristic, or b, operators and scattering operators. Apart from the algebraic and mapping properties, I will discuss microlocal ellipticity, real principal type propagation, radial points and generalizations, as well as normally hyperbolic trapping. The applications discussed will include Fredholm frameworks (which are thus global even for non elliptic problems!) for the Laplacian on asymptotically hyperbolic spaces and the wave operator on asymptotically de Sitter spaces, scattering theory for `scattering metrics' (such as the `large ends' of cones), wave propagation on asymptotically Minkowski spaces and generalizations (`Lorentzian scattering metrics') and on Kerr de Sitter type spaces. The lectures concentrate on linear PDE, but time permitting I will briefly discuss nonlinear versions. The lecture by the speaker in the final workshop will use these results to solve quasilinear wave equations globally, including describing the asymptotic behavior of solutions, on Kerr de Sitter spaces.
Documentation
Liens
Dans la même collection
-
Philippe G LeFloch - Weakly regular spacetimes with T2 symmetry
LeFlochPhilippe G.I will discuss the initial value problem for the Einstein equations and present results concerning the existence and asymptotic behavior of
-
Andras Vasy - Quasilinear waves and trapping: Kerr‐de Sitter space
VasyAndrásIn this talk I will describe recent work with Peter Hintz on globally solving quasilinear wave equations in the presence of trapped rays,
-
Claudio Dappiaggi - On the role of asymptotic structures in the construction of quantum states for …
DappiaggiClaudioIn the algebraic approach to quantum field theory on curved backgrounds, there exists a special class of quantum states for free fields,
-
Andras Vasy - Microlocal analysis and wave propagation (Part 1)
VasyAndrásIn these lectures I will explain the basics of microlocal analysis, emphasizing non elliptic problems, such as wave propagation, both on
-
Jérémie Joudioux - Hertz potentials and the decay of higher spin fields
JoudiouxJérémieThe study of the asymptotic behavior of higher spin fields has proven to be a key point in understanding the stability properties of
-
Thomas Backdahl - Symmetry operators, conserved currents and energy momentum tensors
BackdahlThomasConserved quantities, for example energy and momentum, play a fundamental role in the analysis of dynamics of particles and fields. For
-
Lionel Mason - Perturbative formulae for scattering of gravitational wave
MasonLionel J.The Christodoulou Klainerman proof of existence of asymptotically simple space-times shows that it is reasonable to consider the scattering of
-
Andras Vasy - Microlocal analysis and wave propagation (Part 4)
In these lectures I will explain the basics of microlocal analysis, emphasizing non elliptic problems, such as wave propagation, both on manifolds without boundary, and on manifolds with boundary. In
-
Alexander Strohmaier - Workshop
StrohmaierAlexanderI will explain how one can formulate and formalize the Gupta Bleuler framework for the Quantization of the electromagnetic field in an
-
-
Jérémie Szeftel - General relativity (Workshop)
SzeftelJérémieIn order to control locally a space time which satisfies the Einstein equations, what are the minimal assumptions one should make on its
-
Sur le même thème
-
"Le mathématicien Petre (Pierre) Sergescu, historien des sciences, personnalité du XXe siècle"
HerléaAlexandreAlexandre HERLEA est membre de la section « Sciences, histoire des sciences et des techniques et archéologie industrielle » du CTHS. Professeur émérite des universités, membre effectif de l'Académie
-
Webinaire sur la rédaction des PGD
LouvetViolaineRédaction des Plans de Gestion de Données (PGD) sous l’angle des besoins de la communauté mathématique.
-
Alexandre Booms : « Usage de matériel pédagogique adapté en géométrie : une transposition à interro…
« Usage de matériel pédagogique adapté en géométrie : une transposition à interroger ». Alexandre Booms, doctorant (Université de Reims Champagne-Ardenne - Cérep UR 4692)
-
R. Bamler - Compactness and partial regularity theory of Ricci flows in higher dimensions
BamlerRichard H.We present a new compactness theory of Ricci flows. This theory states that any sequence of Ricci flows that is pointed in an appropriate sense, subsequentially converges to a synthetic flow.
-
P. Burkhardt - Pointwise lower scalar curvature bounds for C0 metrics via regularizing Ricci flow
Burkhardt-GuimPaulaWe propose a class of local definitions of weak lower scalar curvature bounds that is well defined for C0 metrics. We show the following: that our definitions are stable under greater-than-second
-
C. Li - Classifying sufficiently connected PSC manifolds in 4 and 5 dimensions
LiChaoIn this talk, I will discuss some recent developments on the topology of closed manifolds admitting Riemannian metrics of positive scalar curvature. In particular, we will prove if a closed PSC
-
T. Ozuch - Noncollapsed degeneration and desingularization of Einstein 4-manifolds
OzuchTristanWe study the noncollapsed singularity formation of Einstein 4-manifolds. We prove that any smooth Einstein 4-manifold close to a singular one in a mere Gromov-Hausdorff (GH) sense is the result
-
D. Tewodrose - Limits of Riemannian manifolds satisfying a uniform Kato condition
TewodroseDavidPresentation of a joint work with G. Carron and I. Mondello where we study Kato limit spaces.
-
Y. Lai - A family of 3d steady gradient Ricci solitons that are flying wings
LaiYiWe find a family of 3d steady gradient Ricci solitons that are flying wings. This verifies a conjecture by Hamilton. For a 3d flying wing, we show that the scalar curvature does not vanish at
-
A. Mondino - Time-like Ricci curvature bounds via optimal transport
MondinoAndreaThe goal of the talk is to present a recent work in collaboration with Cavalletti (SISSA) on optimal transport in Lorentzian synthetic spaces. The aim is to set up a “Lorentzian analog” of the
-
M. Lesourd - Positive Scalar Curvature on Noncompact Manifolds and the Positive Mass Theorem
LesourdMartinThe study of positive scalar curvature on noncompact manifolds has seen significant progress in the last few years. A major role has been played by Gromov's results and conjectures, and in
-
R. Perales - Recent Intrinsic Flat Convergence Theorems
PeralesRaquelThéorèmes récents de convergence plane intrinsèque