Notice
Jérémie Szeftel - General relativity (Workshop)
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
Descriptif
In order to control locally a space time which satisfies the Einstein equations, what are the minimal assumptions one should make on its curvature tensor? The bounded L2 curvature conjecture roughly asserts that one should only need L2 bounds of the curvature tensor on a given space like hypersurface. This conjecture has its roots in the remarkable developments of the last twenty years centered around the issue of optimal well posedness for nonlinear wave equations. In this context, a corresponding conjecture for nonlinear wave equations cannot hold, unless the nonlinearity has a very special nonlinear structure. I will present the proof of this conjecture, which sheds light on the specific null structure of the Einstein equations. This is joint work with Sergiu Klainerman and Igor Rodnianski.
Documentation
Liens
Dans la même collection
-
Alexander Strohmaier - Workshop
StrohmaierAlexanderI will explain how one can formulate and formalize the Gupta Bleuler framework for the Quantization of the electromagnetic field in an
-
-
Andras Vasy - Microlocal analysis and wave propagation (Part 1)
VasyAndrásIn these lectures I will explain the basics of microlocal analysis, emphasizing non elliptic problems, such as wave propagation, both on
-
-
Alain Bachelot - Waves in the Anti-de Sitter space-time Ads
BachelotAlainIn this talk we address some issues concerning the wave propagation in the 4D+1 anti de Sitter space time : the role of the conformal
-
Semyon Dyatlov - Spectral gaps for normally hyperbolic trapping
DyatlovSemyonMotivated by wave decay for Kerr and Kerr de Sitter black holes, we study spectral gaps for codimension 2 normally hyperbolic trapped sets with
-
Andras Vasy - Microlocal analysis and wave propagation (Part 3)
In these lectures I will explain the basics of microlocal analysis, emphasizing non elliptic problems, such as wave propagation, both on manifolds without boundary, and on manifolds with boundary. In
-
Maciej Zworski - From redshift effect to classical dynamics : microlocal proof of Smale's conjecture
ZworskiMaciejDynamical zeta functions of Selberg, Smale and Ruelle are analogous to the Riemann zeta function with the product over primes replaced by
-
Pieter Blue - Decay for fields outside black holes
BluePieterI will discuss energy and Morawetz (or integrated local decay) estimates for fields outside black holes. These results build on results for
-
Jérémie Szeftel The resolution of the bounded L2 curvature conjecture in General Relativity (Part 1)
SzeftelJérémieIn order to control locally a space time which satisfies the Einstein equations, what are the minimal assumptions one should make on its
-
Philippe G LeFloch - Weakly regular spacetimes with T2 symmetry
LeFlochPhilippe G.I will discuss the initial value problem for the Einstein equations and present results concerning the existence and asymptotic behavior of
-
Andras Vasy - Quasilinear waves and trapping: Kerr‐de Sitter space
VasyAndrásIn this talk I will describe recent work with Peter Hintz on globally solving quasilinear wave equations in the presence of trapped rays,
Avec les mêmes intervenants et intervenantes
-
Jérémie Szeftel The resolution of the bounded L2 curvature conjecture in General Relativity (Part 1)
SzeftelJérémieIn order to control locally a space time which satisfies the Einstein equations, what are the minimal assumptions one should make on its
-
Jérémie Szeftel The resolution of the bounded L2 curvature conjecture in General Relativity (Part 4)
SzeftelJérémieIn order to control locally a space-‐time which satisfies the Einstein equations, what are the minimal assumptions one should make on its
Sur le même thème
-
"Le mathématicien Petre (Pierre) Sergescu, historien des sciences, personnalité du XXe siècle"
HerléaAlexandreAlexandre HERLEA est membre de la section « Sciences, histoire des sciences et des techniques et archéologie industrielle » du CTHS. Professeur émérite des universités, membre effectif de l'Académie
-
Webinaire sur la rédaction des PGD
LouvetViolaineRédaction des Plans de Gestion de Données (PGD) sous l’angle des besoins de la communauté mathématique.
-
Alexandre Booms : « Usage de matériel pédagogique adapté en géométrie : une transposition à interro…
« Usage de matériel pédagogique adapté en géométrie : une transposition à interroger ». Alexandre Booms, doctorant (Université de Reims Champagne-Ardenne - Cérep UR 4692)
-
M. Lesourd - Positive Scalar Curvature on Noncompact Manifolds and the Positive Mass Theorem
LesourdMartinThe study of positive scalar curvature on noncompact manifolds has seen significant progress in the last few years. A major role has been played by Gromov's results and conjectures, and in
-
J. Wang - Topological rigidity and positive scalar curvature
WangJianIn this talk, we shall describe some topological rigidity and its relationship with positive scalar curvature. Precisely, we will present a proof that a complete contractible 3-manifold with
-
R. Perales - Recent Intrinsic Flat Convergence Theorems
PeralesRaquelThéorèmes récents de convergence plane intrinsèque
-
J. Fine - Knots, minimal surfaces and J-holomorphic curves
FineJoëlI will describe work in progress, parts of which are joint with Marcelo Alves. Let L be a knot or link in the 3-sphere. I will explain how one can count minimal surfaces in hyperbolic 4-space
-
D. Semola - Boundary regularity and stability under lower Ricci bounds
SemolaDanieleThe theory of non smooth spaces with lower Ricci Curvature bounds has undergone huge developments in the last thirty years. On the one hand the impetus came from Gromov’s precompactness theorem
-
D. Stern - Harmonic map methods in spectral geometry
SternDanielOver the last fifty years, the problem of finding sharp upper bounds for area-normalized Laplacian eigenvalues on closed surfaces has attracted the attention of many geometers, due in part to
-
P. Burkhardt - Pointwise lower scalar curvature bounds for C0 metrics via regularizing Ricci flow
Burkhardt-GuimPaulaWe propose a class of local definitions of weak lower scalar curvature bounds that is well defined for C0 metrics. We show the following: that our definitions are stable under greater-than-second
-
R. Bamler - Compactness and partial regularity theory of Ricci flows in higher dimensions
BamlerRichard H.We present a new compactness theory of Ricci flows. This theory states that any sequence of Ricci flows that is pointed in an appropriate sense, subsequentially converges to a synthetic flow.
-
C. Li - Classifying sufficiently connected PSC manifolds in 4 and 5 dimensions
LiChaoIn this talk, I will discuss some recent developments on the topology of closed manifolds admitting Riemannian metrics of positive scalar curvature. In particular, we will prove if a closed PSC