Cours/Séminaire
Notice
Langue :
Anglais
Crédits
Fanny Bastien (Réalisation), Pauline Martinet (Réalisation), Thomas Richard (Intervention)
Conditions d'utilisation
CC BY-NC-ND 4.0
DOI : 10.60527/2y7q-hy29
Citer cette ressource :
Thomas Richard. I_Fourier. (2016, 15 juin). Thomas Richard - Lower bounds on Ricci curvature, with a glimpse on limit spaces (Part 4) , in 2016. [Vidéo]. Canal-U. https://doi.org/10.60527/2y7q-hy29. (Consultée le 12 décembre 2024)

Thomas Richard - Lower bounds on Ricci curvature, with a glimpse on limit spaces (Part 4)

Réalisation : 15 juin 2016 - Mise en ligne : 5 juillet 2016
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
Descriptif

The goal of these lectures is to introduce some fundamental tools in the study of manifolds with a lower bound on Ricci curvature. We will first state and prove the laplacian comparison theorem for manifolds with a lower bound on the Ricci curvature, and derive some important consequences : Bishop-Gromov inequality, Myers theorem, Cheeger-Gromoll splitting theorem. Then we will define the Gromov-Hausdorff distance between metric spaces which will allow us to consider limits of sequences of Riemannian manifolds, along the way we will prove Gromov’s precompactness theorem for sequences of manifolds with a Ricci lower bound. We will also see on examples what type of degeneration can occur when considering these « Ricci limit spaces », we will in particular encounter curvature blow up and volume collapsing. One of the major point in the study of these limit spaces is to understand which results on smooth manifolds with a Ricci lower bound carry on to the limit spaces, we will give an introduction to this topic by outlining the proof by Cheeger and Colding of the splitting theorem for limit spaces.

Intervention

Dans la même collection

Avec les mêmes intervenants et intervenantes

Sur le même thème