Cours/Séminaire
Notice
Langue :
Anglais
Crédits
Fanny Bastien (Réalisation), Hugo BÉCHET (Réalisation), Andrea Mondino (Intervention)
Conditions d'utilisation
CC BY-NC-ND 4.0
DOI : 10.60527/3mxj-vb49
Citer cette ressource :
Andrea Mondino. I_Fourier. (2021, 24 juin). A. Mondino - Metric measure spaces satisfying Ricci curvature lower bounds 4 , in 2021. [Vidéo]. Canal-U. https://doi.org/10.60527/3mxj-vb49. (Consultée le 13 septembre 2024)

A. Mondino - Metric measure spaces satisfying Ricci curvature lower bounds 4

Réalisation : 24 juin 2021 - Mise en ligne : 24 août 2021
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
Descriptif

The idea of compactifying the space of Riemannian manifolds satisfying Ricci curvature lower bounds goes back to Gromov in the '80ies and was pushed by Cheeger-Colding in the ‘90ies, who investigated the structure of spaces arising as Gromov-Hausdorff limits of smooth Riemannian manifolds satisfying Ricci curvature lower bounds. A completely new approach based on Optimal Transport was proposed by Lott-Villani and Sturm around ten years ago; via this approach, one can give a precise sense of what means for a non-smooth space (more precisely for a metric measure space) to satisfy a Ricci curvature lower bound and a dimensional upper bound. This approach has been refined in the last years by a number of authors (most notably Ambrosio-Gigli- Savarè) and a number of fundamental tools have now been established, permitting to give further insights in the theory and applications which are new even for smooth Riemannian manifolds. The goal of the lectures is to give an introduction to the theory and discuss some of the applications.

Intervention

Dans la même collection

Avec les mêmes intervenants et intervenantes

Sur le même thème