Cours/Séminaire

C. Sormani - Intrinsic Flat and Gromov-Hausdorff Convergence 4

Durée : 01:36:18 -Réalisation : 25 juin 2021 -Mise en ligne : 25 juin 2021
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
  • audio 1 audio 2 audio 3
Descriptif

We introduce various notions of convergence of Riemannian manifolds and metric spaces.  We then survey results and open questions concerning the limits of sequences of Riemannian manifolds with uniform lower bounds on their scalar curvature.   We close the course by presenting methods and theorems that may be applied to prove these open questions including older techniques developed with Lakzian, with Huang and Lee, and with Portegies.  I will also present key new results of Allen and Perales.   Students and postdocs interested in working on these problems will be formed into teams. For a complete list of papers about intrinsic flat convergence see: https://sites.google.com/site/intrinsicflatconvergence/

Intervenant
Thème
Notice
Langue :
Anglais
Crédits
Fanny Bastien (Réalisation), Hugo BÉCHET (Réalisation), Christina Sormani (Intervenant)
Conditions d'utilisation
CC BY-NC-ND 4.0
Citer cette ressource :
Christina Sormani. I_Fourier. (2021, 25 juin). C. Sormani - Intrinsic Flat and Gromov-Hausdorff Convergence 4. [Vidéo]. Canal-U. https://www.canal-u.tv/107555. (Consultée le 7 juin 2023)
Contacter
Documentation

Dans la même collection

Avec les mêmes intervenants

  • C. Sormani - Intrinsic Flat and Gromov-Hausdorff Convergence 3
    Cours/Séminaire
    01:43:31
    C. Sormani - Intrinsic Flat and Gromov-Hausdorff Convergence 3
    Sormani
    Christina

    We introduce various notions of convergence of Riemannian manifolds and metric spaces.  We then survey results and open questions concerning the limits of sequences of Riemannian manifolds with

  • C. Sormani - Intrinsic Flat and Gromov-Hausdorff Convergence 2
    Cours/Séminaire
    01:32:52
    C. Sormani - Intrinsic Flat and Gromov-Hausdorff Convergence 2
    Sormani
    Christina

    We introduce various notions of convergence of Riemannian manifolds and metric spaces.  We then survey results and open questions concerning the limits of sequences of Riemannian manifolds with

  • C. Sormani - Intrinsic Flat and Gromov-Hausdorff Convergence 1
    Cours/Séminaire
    01:21:32
    C. Sormani - Intrinsic Flat and Gromov-Hausdorff Convergence 1
    Sormani
    Christina

    We introduce various notions of convergence of Riemannian manifolds and metric spaces.  We then survey results and open questions concerning the limits of sequences of Riemannian manifolds with

Sur le même thème