Notice
G. Besson - CAT(k)-spaces 1
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
Descriptif
The purpose of this course is to introduce the synthetic treatment of sectional curvature upper-bound on metric spaces. The basic idea of A.D. Alexandrov was to characterize the curvature bounds on the sectional curvature of a Riemannian manifold in term of properties of its distance function, and then to consider metric spaces with these properties. This approach turned out to be very fruitful and it found many applications, bringing geometric ideas to other settings.In this course we will introduce the metric spaces with a curvature upper-bound in the sense of Alexandrov, and derive some of their geometric properties. The subject is very vast and it is not possible to be exhaustive in the limited time of this course. We will concentrate on some properties, both local and global, emphasizing that these metric spaces share many properties with manifolds of bounded curvature.
Intervention
Dans la même collection
-
C. Li - Classifying sufficiently connected PSC manifolds in 4 and 5 dimensions
LiChaoIn this talk, I will discuss some recent developments on the topology of closed manifolds admitting Riemannian metrics of positive scalar curvature. In particular, we will prove if a closed PSC
-
P. Burkhardt - Pointwise lower scalar curvature bounds for C0 metrics via regularizing Ricci flow
Burkhardt-GuimPaulaWe propose a class of local definitions of weak lower scalar curvature bounds that is well defined for C0 metrics. We show the following: that our definitions are stable under greater-than-second
-
R. Bamler - Compactness and partial regularity theory of Ricci flows in higher dimensions
BamlerRichard H.We present a new compactness theory of Ricci flows. This theory states that any sequence of Ricci flows that is pointed in an appropriate sense, subsequentially converges to a synthetic flow.
-
J. Wang - Topological rigidity and positive scalar curvature
WangJianIn this talk, we shall describe some topological rigidity and its relationship with positive scalar curvature. Precisely, we will present a proof that a complete contractible 3-manifold with
-
J. Fine - Knots, minimal surfaces and J-holomorphic curves
FineJoëlI will describe work in progress, parts of which are joint with Marcelo Alves. Let L be a knot or link in the 3-sphere. I will explain how one can count minimal surfaces in hyperbolic 4-space
-
D. Semola - Boundary regularity and stability under lower Ricci bounds
SemolaDanieleThe theory of non smooth spaces with lower Ricci Curvature bounds has undergone huge developments in the last thirty years. On the one hand the impetus came from Gromov’s precompactness theorem
-
D. Stern - Harmonic map methods in spectral geometry
SternDanielOver the last fifty years, the problem of finding sharp upper bounds for area-normalized Laplacian eigenvalues on closed surfaces has attracted the attention of many geometers, due in part to
-
R. Perales - Recent Intrinsic Flat Convergence Theorems
PeralesRaquelThéorèmes récents de convergence plane intrinsèque
-
Y. Lai - A family of 3d steady gradient Ricci solitons that are flying wings
LaiYiWe find a family of 3d steady gradient Ricci solitons that are flying wings. This verifies a conjecture by Hamilton. For a 3d flying wing, we show that the scalar curvature does not vanish at
-
D. Tewodrose - Limits of Riemannian manifolds satisfying a uniform Kato condition
TewodroseDavidPresentation of a joint work with G. Carron and I. Mondello where we study Kato limit spaces.
-
A. Mondino - Time-like Ricci curvature bounds via optimal transport
MondinoAndreaThe goal of the talk is to present a recent work in collaboration with Cavalletti (SISSA) on optimal transport in Lorentzian synthetic spaces. The aim is to set up a “Lorentzian analog” of the
-
M. Lesourd - Positive Scalar Curvature on Noncompact Manifolds and the Positive Mass Theorem
LesourdMartinThe study of positive scalar curvature on noncompact manifolds has seen significant progress in the last few years. A major role has been played by Gromov's results and conjectures, and in
Avec les mêmes intervenants et intervenantes
-
G. Courtois - Compactness and Finiteness Results for Gromov-Hyperbolic Spaces 3
CourtoisGillesBessonGérardThis is a series of lectures on Bishop--Gromov's type inequalities adapted to metric spaces. We consider the case of Gromov-hyperbolic spaces and draw consequences of these inequalities such as
-
G. Courtois - Compactness and Finiteness Results for Gromov-Hyperbolic Spaces 4
CourtoisGillesBessonGérardThis is a series of lectures on Bishop--Gromov's type inequalities adapted to metric spaces. We consider the case of Gromov-hyperbolic spaces and draw consequences of these inequalities such as
-
G. Courtois - Compactness and Finiteness Results for Gromov-Hyperbolic Spaces 2
CourtoisGillesBessonGérardThis is a series of lectures on Bishop--Gromov's type inequalities adapted to metric spaces. We consider the case of Gromov-hyperbolic spaces and draw consequences of these inequalities such as
-
G. Courtois - Compactness and Finiteness Results for Gromov-Hyperbolic Spaces 1
CourtoisGillesBessonGérardThis is a series of lectures on Bishop--Gromov's type inequalities adapted to metric spaces. We consider the case of Gromov-hyperbolic spaces and draw consequences of these inequalities such as
-
P. Castillon - CAT(k)-spaces 4
BessonGérardCastillonPhilippeThe purpose of this course is to introduce the synthetic treatment of sectional curvature upper-bound on metric spaces. The basic idea of A.D. Alexandrov was to characterize the curvature bounds
-
P. Castillon - CAT(k)-spaces 3
BessonGérardCastillonPhilippeThe purpose of this course is to introduce the synthetic treatment of sectional curvature upper-bound on metric spaces. The basic idea of A.D. Alexandrov was to characterize the curvature bounds
-
P. Castillon - CAT(k)-spaces 2
BessonGérardCastillonPhilippeThe purpose of this course is to introduce the synthetic treatment of sectional curvature upper-bound on metric spaces. The basic idea of A.D. Alexandrov was to characterize the curvature bounds
Sur le même thème
-
"Le mathématicien Petre (Pierre) Sergescu, historien des sciences, personnalité du XXe siècle"
HerléaAlexandreAlexandre HERLEA est membre de la section « Sciences, histoire des sciences et des techniques et archéologie industrielle » du CTHS. Professeur émérite des universités, membre effectif de l'Académie
-
Webinaire sur la rédaction des PGD
LouvetViolaineRédaction des Plans de Gestion de Données (PGD) sous l’angle des besoins de la communauté mathématique.
-
Alexandre Booms : « Usage de matériel pédagogique adapté en géométrie : une transposition à interro…
« Usage de matériel pédagogique adapté en géométrie : une transposition à interroger ». Alexandre Booms, doctorant (Université de Reims Champagne-Ardenne - Cérep UR 4692)
-
C. Li - Classifying sufficiently connected PSC manifolds in 4 and 5 dimensions
LiChaoIn this talk, I will discuss some recent developments on the topology of closed manifolds admitting Riemannian metrics of positive scalar curvature. In particular, we will prove if a closed PSC
-
Y. Lai - A family of 3d steady gradient Ricci solitons that are flying wings
LaiYiWe find a family of 3d steady gradient Ricci solitons that are flying wings. This verifies a conjecture by Hamilton. For a 3d flying wing, we show that the scalar curvature does not vanish at
-
T. Ozuch - Noncollapsed degeneration and desingularization of Einstein 4-manifolds
OzuchTristanWe study the noncollapsed singularity formation of Einstein 4-manifolds. We prove that any smooth Einstein 4-manifold close to a singular one in a mere Gromov-Hausdorff (GH) sense is the result
-
D. Tewodrose - Limits of Riemannian manifolds satisfying a uniform Kato condition
TewodroseDavidPresentation of a joint work with G. Carron and I. Mondello where we study Kato limit spaces.
-
A. Mondino - Time-like Ricci curvature bounds via optimal transport
MondinoAndreaThe goal of the talk is to present a recent work in collaboration with Cavalletti (SISSA) on optimal transport in Lorentzian synthetic spaces. The aim is to set up a “Lorentzian analog” of the
-
M. Lesourd - Positive Scalar Curvature on Noncompact Manifolds and the Positive Mass Theorem
LesourdMartinThe study of positive scalar curvature on noncompact manifolds has seen significant progress in the last few years. A major role has been played by Gromov's results and conjectures, and in
-
J. Wang - Topological rigidity and positive scalar curvature
WangJianIn this talk, we shall describe some topological rigidity and its relationship with positive scalar curvature. Precisely, we will present a proof that a complete contractible 3-manifold with
-
R. Perales - Recent Intrinsic Flat Convergence Theorems
PeralesRaquelThéorèmes récents de convergence plane intrinsèque
-
J. Fine - Knots, minimal surfaces and J-holomorphic curves
FineJoëlI will describe work in progress, parts of which are joint with Marcelo Alves. Let L be a knot or link in the 3-sphere. I will explain how one can count minimal surfaces in hyperbolic 4-space