-
- Date de réalisation : 24 Juin 2016
- Durée du programme : 86 min
- Classification Dewey : Mathématiques
-
- Catégorie : Cours magistraux
- Niveau : niveau Doctorat (LMD), Recherche
- Disciplines : Géométrie
- Collections : Ecoles d'été, 2016
- ficheLom : Voir la fiche LOM
-
- Auteur(s) : LUO Feng
- Réalisateur(s) : Bastien Fanny
-
- Langue : Anglais
- Mots-clés : Grenoble, CNRS, summer school, geometric analysis, metric geometry, topology, insitut fourier, UGA, conformal geometry, polyhedral surfaces
- Conditions d’utilisation / Copyright : CC BY-NC-ND 4.0
Dans la même collection
























Feng Luo - An introduction to discrete conformal geometry of polyhedral surfaces (Part 5)
The goal of the course is to introduce some of the recent developments on discrete conformal geometry of polyhedral surfaces. We plan to cover the following topics.
- The Andreev-Koebe-Thurston theorem on circle packing polyhedral metrics and Marden-Rodin’s proof
- Thurston’s conjecture on the convergence of circle packings to the Riemann mapping and its solution by Rodin-Sullivan
- Finite dimensional variational principles associated to polyhedral surfaces
- A discrete conformal equivalence of polyhedral surfaces and its relationship to convex polyhedra in hyperbolic 3-space
- A discrete uniformization theorem for compact polyhedral surfaces
- Convergence of discrete conformality and some open problems
commentaires
Ajouter un commentaire Lire les commentaires