# Canal-U

Mon compte

## Robert Haslhofer - The moduli space of 2-convex embedded spheres

Copier le code pour partager la vidéo :
<div style="position:relative;padding-bottom:56.25%;padding-top:10px;height:0;overflow:hidden;"><iframe src="https://www.canal-u.tv/video/institut_fourier/embed.1/robert_haslhofer_the_moduli_space_of_2_convex_embedded_spheres.24218?width=100%&amp;height=100%" style="position:absolute;top:0;left:0;width:100%;height: 100%;" width="550" height="306" frameborder="0" allowfullscreen scrolling="no"></iframe></div> Si vous souhaitez partager une séquence, indiquez le début de celle-ci , et copiez le code : h m s
Producteur Canal-U :
Institut Fourier
Contacter la chaine
J’aime
Imprimer
partager

### Robert Haslhofer - The moduli space of 2-convex embedded spheres

We investigate the topology of the space of smoothly embedded n-spheres in R^{n+1}, i.e. the quotient space M_n:=Emb(S^n,R^{n+1})/Diff(S^n). By Hatcher’s proof of the Smale conjecture, M_2 is contractible. This is a highly nontrivial theorem generalizing in particular the Schoenflies theorem and Cerf’s theorem.

In this talk, I will explain how geometric analysis can be used to study the topology of M_n respectively some of its variants.I will start by sketching a proof of Smale’s theorem that M_1 is contractible. By a beautiful theorem of Grayson, the curve shortening flow deforms any closed embedded curve in the plane to a round circle, and thus gives a geometric analytic proof of the fact that M_1 is path-connected. By flowing, roughly speaking, all curves simultaneously, one can improve path-connectedness to contractibility.In the second half of my talk, I’ll describe recent work on space of smoothly embedded spheres in the 2-convex case, i.e. when the sum of the two smallest principal curvatures is positive. Our main theorem (joint with Buzano and Hershkovits) proves that this space is path-connected, for every n. The proof uses mean curvature flow with surgery.

## commentaires

Ajouter un commentaire Lire les commentaires
*Les champs suivis d’un astérisque sont obligatoires.
Aucun commentaire sur cette vidéo pour le moment (les commentaires font l’objet d’une modération)