Notice
Sergiu Klainerman - Remarks on the stability of Kerr for axisymetryc perturbations
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
Descriptif
TBA
Documentation
Liens
Dans la même collection
-
Semyon Dyatlov - Spectral gaps for normally hyperbolic trapping
DYATLOV Semyon
Motivated by wave decay for Kerr and Kerr de Sitter black holes, we study spectral gaps for codimension 2 normally hyperbolic trapped sets with
-
Andras Vasy - Microlocal analysis and wave propagation (Part 3)
In these lectures I will explain the basics of microlocal analysis, emphasizing non elliptic problems, such as wave propagation, both on manifolds without boundary, and on manifolds with boundary. In
-
Alexander Strohmaier - Workshop
STROHMAIER Alexander
I will explain how one can formulate and formalize the Gupta Bleuler framework for the Quantization of the electromagnetic field in an
-
Pieter Blue - Decay for fields outside black holes
BLUE Pieter
I will discuss energy and Morawetz (or integrated local decay) estimates for fields outside black holes. These results build on results for
-
Jérémie Szeftel - General relativity (Workshop)
SZEFTEL Jérémie
In order to control locally a space time which satisfies the Einstein equations, what are the minimal assumptions one should make on its
-
Philippe G LeFloch - Weakly regular spacetimes with T2 symmetry
LEFLOCH Philippe G.
I will discuss the initial value problem for the Einstein equations and present results concerning the existence and asymptotic behavior of
-
Andras Vasy - Quasilinear waves and trapping: Kerr‐de Sitter space
VASY András
In this talk I will describe recent work with Peter Hintz on globally solving quasilinear wave equations in the presence of trapped rays,
-
Claudio Dappiaggi - On the role of asymptotic structures in the construction of quantum states for …
DAPPIAGGI Claudio
In the algebraic approach to quantum field theory on curved backgrounds, there exists a special class of quantum states for free fields,
-
Andras Vasy - Microlocal analysis and wave propagation (Part 2)
In these lectures I will explain the basics of microlocal analysis, emphasizing non elliptic problems, such as wave propagation, both on manifolds without boundary, and on manifolds with boundary. In
-
Maciej Zworski - From redshift effect to classical dynamics : microlocal proof of Smale's conjecture
ZWORSKI Maciej
Dynamical zeta functions of Selberg, Smale and Ruelle are analogous to the Riemann zeta function with the product over primes replaced by
-
Thomas Backdahl - Symmetry operators, conserved currents and energy momentum tensors
BACKDAHL Thomas
Conserved quantities, for example energy and momentum, play a fundamental role in the analysis of dynamics of particles and fields. For
-
Jérémie Szeftel The resolution of the bounded L2 curvature conjecture in General Relativity (Part 1)
SZEFTEL Jérémie
In order to control locally a space time which satisfies the Einstein equations, what are the minimal assumptions one should make on its
Sur le même thème
-
"Le mathématicien Petre (Pierre) Sergescu, historien des sciences, personnalité du XXe siècle"
HERLéA Alexandre
Alexandre HERLEA est membre de la section « Sciences, histoire des sciences et des techniques et archéologie industrielle » du CTHS. Professeur émérite des universités, membre effectif de l'Académie
-
Webinaire sur la rédaction des PGD
LOUVET Violaine
Rédaction des Plans de Gestion de Données (PGD) sous l’angle des besoins de la communauté mathématique.
-
Alexandre Booms : « Usage de matériel pédagogique adapté en géométrie : une transposition à interro…
« Usage de matériel pédagogique adapté en géométrie : une transposition à interroger ». Alexandre Booms, doctorant (Université de Reims Champagne-Ardenne - Cérep UR 4692)
-
A. Mondino - Time-like Ricci curvature bounds via optimal transport
MONDINO Andrea
The goal of the talk is to present a recent work in collaboration with Cavalletti (SISSA) on optimal transport in Lorentzian synthetic spaces. The aim is to set up a “Lorentzian analog” of the
-
M. Lesourd - Positive Scalar Curvature on Noncompact Manifolds and the Positive Mass Theorem
LESOURD Martin
The study of positive scalar curvature on noncompact manifolds has seen significant progress in the last few years. A major role has been played by Gromov's results and conjectures, and in
-
R. Perales - Recent Intrinsic Flat Convergence Theorems
PERALES Raquel
Théorèmes récents de convergence plane intrinsèque
-
J. Fine - Knots, minimal surfaces and J-holomorphic curves
FINE Joël
I will describe work in progress, parts of which are joint with Marcelo Alves. Let L be a knot or link in the 3-sphere. I will explain how one can count minimal surfaces in hyperbolic 4-space
-
P. Burkhardt - Pointwise lower scalar curvature bounds for C0 metrics via regularizing Ricci flow
BURKHARDT-GUIM Paula
We propose a class of local definitions of weak lower scalar curvature bounds that is well defined for C0 metrics. We show the following: that our definitions are stable under greater-than-second
-
D. Semola - Boundary regularity and stability under lower Ricci bounds
SEMOLA Daniele
The theory of non smooth spaces with lower Ricci Curvature bounds has undergone huge developments in the last thirty years. On the one hand the impetus came from Gromov’s precompactness theorem
-
D. Stern - Harmonic map methods in spectral geometry
STERN Daniel
Over the last fifty years, the problem of finding sharp upper bounds for area-normalized Laplacian eigenvalues on closed surfaces has attracted the attention of many geometers, due in part to
-
Y. Lai - A family of 3d steady gradient Ricci solitons that are flying wings
LAI Yi
We find a family of 3d steady gradient Ricci solitons that are flying wings. This verifies a conjecture by Hamilton. For a 3d flying wing, we show that the scalar curvature does not vanish at
-
R. Bamler - Compactness and partial regularity theory of Ricci flows in higher dimensions
BAMLER Richard H.
We present a new compactness theory of Ricci flows. This theory states that any sequence of Ricci flows that is pointed in an appropriate sense, subsequentially converges to a synthetic flow.