Notice
A. Eskin - Counting closed geodesics on translation surfaces
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
Descriptif
We show that the number of closed geodesics in the flat metric on a translation surface of length at most R is asymptotic to e hR / (hR). This is joint work with Kasra Rafi
Dans la même collection
-
A. Zorich - Counting simple closed geodesics and volumes of moduli spaces (Part 3)
ZorichAntonIn the first two lectures I will try to tell (or, rather, to give an idea) of how Maryam Mirzakhani has counted simple closed geodesics on hyperbolic surfaces. I plan to briefly mention her
-
A. Zorich - Counting simple closed geodesics and volumes of moduli spaces (Part 1)
ZorichAntonIn the first two lectures I will try to tell (or, rather, to give an idea) of how Maryam Mirzakhani has counted simple closed geodesics on hyperbolic surfaces. I plan to briefly mention her
-
Ö. Yurttas - Algorithms for multicurves with Dynnikov coordinates
YurttasÖyküMulticurves have played a fundamental role in the study of mapping class groups of surfaces since the work of Dehn. A beautiful method of describing such systems on the n-punctured disk is given by
-
A. Wright - Mirzakhani's work on Earthquakes (Part 1)
WrightAlexanderWe will give the proof of Mirzakhani's theorem that the earthquake flow and Teichmuller unipotent flow are measurably isomorphic. We will assume some familiarity with quadratic differentials, but no
-
C. Leininger - Teichmüller spaces and pseudo-Anosov homeomorphism (Part 3)
I will start by describing the Teichmuller space of a surface of finite type from the perspective of both hyperbolic and complex structures and the action of the mapping class group on it.
-
J. Aramayona - MCG and infinite MCG (Part 3)
AramayonaJavierThe first part of the course will be devoted to some of the classical results about mapping class groups of finite-type surfaces. Topics may include: generation by twists, Nielsen-Thurston
-
S.Schleimer - An introduction to veering triangulations
SchleimerSaulSingular euclidean structures on surfaces are a key tool in the study of the mapping class group, of Teichmüller space, and of kleinian three-manifolds. François Guéritaud, while studying work of Ian
-
C.Fougeron - Diffusion rate for windtree models
FougeronCharlesRecent results on windtree models with polygonal obstacles have linked their diffusion rate with Lyapunov exponents in stata of quadratic differentials. The proves of these theorems follow from the
-
A. Wright - Mirzakhani's work on Earthquakes (Part 3)
WrightAlexanderWe will give the proof of Mirzakhani's theorem that the earthquake flow and Teichmuller unipotent flow are measurably isomorphic. We will assume some familiarity with quadratic differentials, but no
-
-
B. Deroin - Monodromy of algebraic families of curves (Part 2)
DeroinBertrandThe mini-course will focus on the properties of the monodromies of algebraic families of curves defined over the complex numbers. One of the goal will be to prove the irreducibility of those
-
J. Smillie - Horocycle dynamics (Part 2)
SmillieJohnA major challenge in dynamics on moduli spaces is to understand the behavior of the horocycle flow. We will motivate this problem and discuss what is known and what is not known about it, focusing on
Sur le même thème
-
"Le mathématicien Petre (Pierre) Sergescu, historien des sciences, personnalité du XXe siècle"
HerléaAlexandreAlexandre HERLEA est membre de la section « Sciences, histoire des sciences et des techniques et archéologie industrielle » du CTHS. Professeur émérite des universités, membre effectif de l'Académie
-
Webinaire sur la rédaction des PGD
LouvetViolaineRédaction des Plans de Gestion de Données (PGD) sous l’angle des besoins de la communauté mathématique.
-
Alexandre Booms : « Usage de matériel pédagogique adapté en géométrie : une transposition à interro…
« Usage de matériel pédagogique adapté en géométrie : une transposition à interroger ». Alexandre Booms, doctorant (Université de Reims Champagne-Ardenne - Cérep UR 4692)
-
D. Semola - Boundary regularity and stability under lower Ricci bounds
SemolaDanieleThe theory of non smooth spaces with lower Ricci Curvature bounds has undergone huge developments in the last thirty years. On the one hand the impetus came from Gromov’s precompactness theorem
-
D. Stern - Harmonic map methods in spectral geometry
SternDanielOver the last fifty years, the problem of finding sharp upper bounds for area-normalized Laplacian eigenvalues on closed surfaces has attracted the attention of many geometers, due in part to
-
Y. Lai - A family of 3d steady gradient Ricci solitons that are flying wings
LaiYiWe find a family of 3d steady gradient Ricci solitons that are flying wings. This verifies a conjecture by Hamilton. For a 3d flying wing, we show that the scalar curvature does not vanish at
-
R. Bamler - Compactness and partial regularity theory of Ricci flows in higher dimensions
BamlerRichard H.We present a new compactness theory of Ricci flows. This theory states that any sequence of Ricci flows that is pointed in an appropriate sense, subsequentially converges to a synthetic flow.
-
C. Li - Classifying sufficiently connected PSC manifolds in 4 and 5 dimensions
LiChaoIn this talk, I will discuss some recent developments on the topology of closed manifolds admitting Riemannian metrics of positive scalar curvature. In particular, we will prove if a closed PSC
-
T. Ozuch - Noncollapsed degeneration and desingularization of Einstein 4-manifolds
OzuchTristanWe study the noncollapsed singularity formation of Einstein 4-manifolds. We prove that any smooth Einstein 4-manifold close to a singular one in a mere Gromov-Hausdorff (GH) sense is the result
-
D. Tewodrose - Limits of Riemannian manifolds satisfying a uniform Kato condition
TewodroseDavidPresentation of a joint work with G. Carron and I. Mondello where we study Kato limit spaces.
-
J. Wang - Topological rigidity and positive scalar curvature
WangJianIn this talk, we shall describe some topological rigidity and its relationship with positive scalar curvature. Precisely, we will present a proof that a complete contractible 3-manifold with
-
A. Mondino - Time-like Ricci curvature bounds via optimal transport
MondinoAndreaThe goal of the talk is to present a recent work in collaboration with Cavalletti (SISSA) on optimal transport in Lorentzian synthetic spaces. The aim is to set up a “Lorentzian analog” of the