Notice
Franc Forstnerič - Non singular holomorphic foliations on Stein manifolds (Part 2)
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
Descriptif
A nonsingular holomorphic foliation of codimension on a complex manifold is locally given by the level sets of a holomorphic submersion to the Euclidean space . If is a Stein manifold, there also exist plenty of global foliations of this form, so long as there are no topological obstructions. More precisely, if then any -tuple of pointwise linearly independent (1,0)-forms can be continuously deformed to a -tuple of differentials where is a holomorphic submersion of to . Such a submersion always exists if is no more than the integer part of . More generally, if is a complex vector subbundle of the tangent bundle such that is a flat bundle, then is homotopic (through complex vector subbundles of ) to an integrable subbundle, i.e., to the tangent bundle of a nonsingular holomorphic foliation on . I will prove these results and discuss open problems, the most interesting one of them being related to a conjecture of Bogomolov.
Thème
Documentation
Liens
Dans la même collection
-
François Lalonde - Applications of Quantum homology to Symplectic Topology (Part 3)
LALONDE François
The first two lectures will present the fundamental results of symplectic topology : basic definitions, Moser’s lemma, normal forms of the symplectic structure near symplectic and Lagrangian
-
Andrei Teleman - Instantons and holomorphic curves on surfaces of class VII (Part 2)
TELEMAN Andrei
This series of lectures is dedicated to recent results concerning the existence of holomorphic curves on the surfaces of class VII. The first lecture will be an introduction to the Donaldson
-
Claude Viterbo - Théorie des faisceaux et Topologie symplectique (Part 4)
L’utilisation de méthodes de théorie des faisceaux (Kashiwara-Schapira)a été dévelopée ces dernières années par Tamarkin, Nadler, Zaslow, Guillermou, Kashiwara et Schapira. Nous essaierons d’en
-
Serguei Ivachkovitch - Method of pseudoholomorphic curves and applications (Part 3)
IVACHKOVITCH Sergueï
The method of « pseudoholomorphic » curves proved itself to be extremely useful in different fields. In symplectic topology, for instance Gromov’s Nonsqueezing Theorem, Arnold’s conjecture and the
-
-
Andrei Teleman - Instantons and holomorphic curves on surfaces of class VII (Part 3)
TELEMAN Andrei
This series of lectures is dedicated to recent results concerning the existence of holomorphic curves on the surfaces of class VII. The first lecture will be an introduction to the Donaldson
-
Claude Viterbo - Théorie des faisceaux et Topologie symplectique (Part 1)
VITERBO Claude
L’utilisation de méthodes de théorie des faisceaux (Kashiwara-Schapira)a été dévelopée ces dernières années par Tamarkin, Nadler, Zaslow, Guillermou, Kashiwara et Schapira. Nous essaierons d’en
-
Serguei Ivachkovitch - Method of pseudoholomorphic curves and applications (Part 4)
IVACHKOVITCH Sergueï
The method of « pseudoholomorphic » curves proved itself to be extremely useful in different fields. In symplectic topology, for instance Gromov’s Nonsqueezing Theorem, Arnold’s conjecture and the
-
François Lalonde - Applications of Quantum homology to Symplectic Topology (Part 2)
LALONDE François
The first two lectures will present the fundamental results of symplectic topology : basic definitions, Moser’s lemma, normal forms of the symplectic structure near symplectic and Lagrangian
-
Andrei Teleman - Instantons and holomorphic curves on surfaces of class VII (Part 1)
TELEMAN Andrei
This series of lectures is dedicated to recent results concerning the existence of holomorphic curves on the surfaces of class VII. The first lecture will be an introduction to the Donaldson
-
Claude Viterbo - Théorie des faisceaux et Topologie symplectique (Part 2)
VITERBO Claude
L’utilisation de méthodes de théorie des faisceaux (Kashiwara-Schapira)a été dévelopée ces dernières années par Tamarkin, Nadler, Zaslow, Guillermou, Kashiwara et Schapira. Nous essaierons d’en
-
Serguei Ivachkovitch - Method of pseudoholomorphic curves and applications (Part 1)
IVACHKOVITCH Sergueï
The method of « pseudoholomorphic » curves proved itself to be extremely useful in different fields. In symplectic topology, for instance Gromov’s Nonsqueezing Theorem, Arnold’s conjecture and the
Sur le même thème
-
"Le mathématicien Petre (Pierre) Sergescu, historien des sciences, personnalité du XXe siècle"
HERLéA Alexandre
Alexandre HERLEA est membre de la section « Sciences, histoire des sciences et des techniques et archéologie industrielle » du CTHS. Professeur émérite des universités, membre effectif de l'Académie
-
Webinaire sur la rédaction des PGD
LOUVET Violaine
Rédaction des Plans de Gestion de Données (PGD) sous l’angle des besoins de la communauté mathématique.
-
Alexandre Booms : « Usage de matériel pédagogique adapté en géométrie : une transposition à interro…
« Usage de matériel pédagogique adapté en géométrie : une transposition à interroger ». Alexandre Booms, doctorant (Université de Reims Champagne-Ardenne - Cérep UR 4692)
-
T. Ozuch - Noncollapsed degeneration and desingularization of Einstein 4-manifolds
OZUCH Tristan
We study the noncollapsed singularity formation of Einstein 4-manifolds. We prove that any smooth Einstein 4-manifold close to a singular one in a mere Gromov-Hausdorff (GH) sense is the result
-
D. Tewodrose - Limits of Riemannian manifolds satisfying a uniform Kato condition
TEWODROSE David
Presentation of a joint work with G. Carron and I. Mondello where we study Kato limit spaces.
-
Y. Lai - A family of 3d steady gradient Ricci solitons that are flying wings
LAI Yi
We find a family of 3d steady gradient Ricci solitons that are flying wings. This verifies a conjecture by Hamilton. For a 3d flying wing, we show that the scalar curvature does not vanish at
-
A. Mondino - Time-like Ricci curvature bounds via optimal transport
MONDINO Andrea
The goal of the talk is to present a recent work in collaboration with Cavalletti (SISSA) on optimal transport in Lorentzian synthetic spaces. The aim is to set up a “Lorentzian analog” of the
-
M. Lesourd - Positive Scalar Curvature on Noncompact Manifolds and the Positive Mass Theorem
LESOURD Martin
The study of positive scalar curvature on noncompact manifolds has seen significant progress in the last few years. A major role has been played by Gromov's results and conjectures, and in
-
R. Perales - Recent Intrinsic Flat Convergence Theorems
PERALES Raquel
Théorèmes récents de convergence plane intrinsèque
-
J. Fine - Knots, minimal surfaces and J-holomorphic curves
FINE Joël
I will describe work in progress, parts of which are joint with Marcelo Alves. Let L be a knot or link in the 3-sphere. I will explain how one can count minimal surfaces in hyperbolic 4-space
-
J. Wang - Topological rigidity and positive scalar curvature
WANG Jian
In this talk, we shall describe some topological rigidity and its relationship with positive scalar curvature. Precisely, we will present a proof that a complete contractible 3-manifold with
-
D. Semola - Boundary regularity and stability under lower Ricci bounds
SEMOLA Daniele
The theory of non smooth spaces with lower Ricci Curvature bounds has undergone huge developments in the last thirty years. On the one hand the impetus came from Gromov’s precompactness theorem