Notice
Valérie Berthé - Fractions continues multidimensionnelles et dynamique (Part 1)
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
Descriptif
Le but de cet exposé est de présenter des généralisations multidimensionnelles des fractions continues et de l’algorithme d’Euclide d’un point de vue systèmes dynamiques, en nous concentrant sur les liens avec la numération et les substitutions. Nous allons considérer principalement deux types de généralisations, à savoir, les algorithmes définis par homographies, comme l’algorithme de Jacobi-Perron, et les fractions continues associées aux algorithmes de réduction dans les réseaux.
Thème
Documentation
Liens
Dans la même collection
-
Alexander Gorodnik - Diophantine approximation and flows on homogeneous spaces (Part 1)
GorodnikAlexanderThe fundamental problem in the theory of Diophantine approximation is to understand how well points in the Euclidean space can be approximated by rational vectors with given bounds on
-
-
Alexander Gorodnik - Diophantine approximation and flows on homogeneous spaces (Part 3)
The fundamental problem in the theory of Diophantine approximation is to understand how well points in the Euclidean space can be approximated by rational vectors with given bounds on
-
-
Alexander Gorodnik - Diophantine approximation and flows on homogeneous spaces (Part 2)
The fundamental problem in the theory of Diophantine approximation is to understand how well points in the Euclidean space can be approximated by rational vectors with given bounds on
-
-
-
Christiane Frougny - Systèmes de numération et automates (Part 1)
FrougnyChristianeAutomates finis et langages rationnels de mots finis • Automates finis et mots infinis • Systèmes de numération à base réelle • Nombres de Pisot, nombres de Parry et nombres de Perron • Systèmes
-
Karma Dajani - An introduction to Ergodic Theory of Numbers (Part 3)
In this course we give an introduction to the ergodic theory behind common number expansions, like expansions to integer and non-integer bases, Luroth series and continued fraction expansion.
-
-
-
Avec les mêmes intervenants et intervenantes
-
Valérie Berthé - Fractions continues multidimensionnelles et dynamique (Part 3)
BerthéValérieLe but de cet exposé est de présenter des généralisations multidimensionnelles des fractions continues et de l’algorithme d’Euclide d’un point de vue systèmes dynamiques, en nous concentrant sur
Sur le même thème
-
"Le mathématicien Petre (Pierre) Sergescu, historien des sciences, personnalité du XXe siècle"
HerléaAlexandreAlexandre HERLEA est membre de la section « Sciences, histoire des sciences et des techniques et archéologie industrielle » du CTHS. Professeur émérite des universités, membre effectif de l'Académie
-
Webinaire sur la rédaction des PGD
LouvetViolaineRédaction des Plans de Gestion de Données (PGD) sous l’angle des besoins de la communauté mathématique.
-
Alexandre Booms : « Usage de matériel pédagogique adapté en géométrie : une transposition à interro…
« Usage de matériel pédagogique adapté en géométrie : une transposition à interroger ». Alexandre Booms, doctorant (Université de Reims Champagne-Ardenne - Cérep UR 4692)
-
P. Burkhardt - Pointwise lower scalar curvature bounds for C0 metrics via regularizing Ricci flow
Burkhardt-GuimPaulaWe propose a class of local definitions of weak lower scalar curvature bounds that is well defined for C0 metrics. We show the following: that our definitions are stable under greater-than-second
-
R. Perales - Recent Intrinsic Flat Convergence Theorems
PeralesRaquelThéorèmes récents de convergence plane intrinsèque
-
J. Fine - Knots, minimal surfaces and J-holomorphic curves
FineJoëlI will describe work in progress, parts of which are joint with Marcelo Alves. Let L be a knot or link in the 3-sphere. I will explain how one can count minimal surfaces in hyperbolic 4-space
-
D. Semola - Boundary regularity and stability under lower Ricci bounds
SemolaDanieleThe theory of non smooth spaces with lower Ricci Curvature bounds has undergone huge developments in the last thirty years. On the one hand the impetus came from Gromov’s precompactness theorem
-
Y. Lai - A family of 3d steady gradient Ricci solitons that are flying wings
LaiYiWe find a family of 3d steady gradient Ricci solitons that are flying wings. This verifies a conjecture by Hamilton. For a 3d flying wing, we show that the scalar curvature does not vanish at
-
D. Stern - Harmonic map methods in spectral geometry
SternDanielOver the last fifty years, the problem of finding sharp upper bounds for area-normalized Laplacian eigenvalues on closed surfaces has attracted the attention of many geometers, due in part to
-
R. Bamler - Compactness and partial regularity theory of Ricci flows in higher dimensions
BamlerRichard H.We present a new compactness theory of Ricci flows. This theory states that any sequence of Ricci flows that is pointed in an appropriate sense, subsequentially converges to a synthetic flow.
-
C. Li - Classifying sufficiently connected PSC manifolds in 4 and 5 dimensions
LiChaoIn this talk, I will discuss some recent developments on the topology of closed manifolds admitting Riemannian metrics of positive scalar curvature. In particular, we will prove if a closed PSC
-
J. Wang - Topological rigidity and positive scalar curvature
WangJianIn this talk, we shall describe some topological rigidity and its relationship with positive scalar curvature. Precisely, we will present a proof that a complete contractible 3-manifold with