Cours

Jérémie Szeftel The resolution of the bounded L2 curvature conjecture in General Relativity (Part 4)

Réalisation : 27 juin 2014 Mise en ligne : 27 juin 2014
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
  • audio 1 audio 2 audio 3
Descriptif

In order to control locally a space-­‐time which satisfies the Einstein equations, what are the minimal assumptions one should make on its curvature tensor? The bounded L2 curvature conjecture roughly asserts that one should only need L2 bounds of the curvature tensor on a given space-­‐like hypersurface. This conjecture has its roots in the remarkable developments of the last twenty years centered around the issue of optimal well-­‐posedness for nonlinear wave equations. In this context, a corresponding conjecture for nonlinear wave equations cannot hold, unless the nonlinearity has a very special nonlinear structure. I will present the proof of this conjecture, which sheds light on the specific null structure of the Einstein equations. This is joint work with Sergiu Klainerman and Igor Rodnianski. These lectures will start from scratch and require no specific background.

Date de réalisation
Langue :
Anglais
Crédits
Fanny Bastien (Réalisation)
Conditions d'utilisation
CC BY-NC-ND 4.0
Citer cette ressource:
I_Fourier. (2014, 27 juin). Jérémie Szeftel The resolution of the bounded L2 curvature conjecture in General Relativity (Part 4). [Vidéo]. Canal-U. https://www.canal-u.tv/86531. (Consultée le 24 janvier 2022)
Contacter

Dans la même collection

Avec les mêmes intervenants

Sur le même thème