Cours

# C. Soulé - Arithmetic Intersection (Part3)

Réalisation : 15 juin 2017 Mise en ligne : 15 juin 2017
• document 1 document 2 document 3
• niveau 1 niveau 2 niveau 3
• audio 1 audio 2 audio 3
Descriptif

Let X be a 2-dimensional, normal, flat, proper scheme over the integers. Assume ¯L and ¯M are two hermitian line bundles over X. Arakelov (and Deligne) defined a real number ¯L.¯M, the arithmetic intersection number of ¯L and ¯M. We shall explain the definition and the basic properties of this number. Next, we shall see how to extend this construction to higher dimension, and how to interpret it in terms of arithmetic Chow groups.

Intervenants
Thèmes
Notice
Langue :
Anglais
Crédits
Jérémy MAGNIEN (Réalisation)
Conditions d'utilisation
CC BY-NC-ND 4.0
Citer cette ressource:
I_Fourier. (2017, 15 juin). C. Soulé - Arithmetic Intersection (Part3). [Vidéo]. Canal-U. https://www.canal-u.tv/70091. (Consultée le 21 mai 2022)
Contacter
Documentation

## Avec les mêmes intervenants

• Cours
01:24:42
C. Soulé - Arithmetic Intersection (Part4)
Soulé
Christophe

Let X be a 2-dimensional, normal, flat, proper scheme over the integers. Assume ¯L and ¯M are two hermitian line bundles over X. Arakelov (and Deligne) defined a real number ¯L.¯M, the arithmetic

• Cours
01:10:08
C. Soulé - Arithmetic Intersection (Part2)
Soulé
Christophe

Let X be a 2-dimensional, normal, flat, proper scheme over the integers. Assume ¯L and ¯M are two hermitian line bundles over X. Arakelov (and Deligne) defined a real number ¯L.¯M, the arithmetic

• Cours
01:31:49
C. Soulé - Arithmetic Intersection (Part1)
Soulé
Christophe

Let X be a 2-dimensional, normal, flat, proper scheme over the integers. Assume ¯L and ¯M are two hermitian line bundles over X. Arakelov (and Deligne) defined a real number ¯L.¯M, the arithmetic