Conférence

Y. Tang - Exceptional splitting of reductions of abelian surfaces with real multiplication

Réalisation : 27 juin 2017 Mise en ligne : 27 juin 2017
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
  • audio 1 audio 2 audio 3
Descriptif

Chavdarov and Zywina showed that after passing to a suitable field extension, every abelian surface A with real multiplication over some number field has geometrically simple reduction modulo p for a density one set of primes p. One may ask whether its complement, the density zero set of primes p such that the reduction of A modulo p is not geometrically simple, is infinite. Such question is analogous to the study of exceptional mod p isogeny between two elliptic curves in the recent work of Charles. In this talk, I will discuss how to apply Charles's method to the setting of certain abelian surfaces with real multiplication. This is joint work with Ananth Shankar.

Thèmes
Notice
Langue :
Anglais
Crédits
Jérémy MAGNIEN (Réalisation)
Conditions d'utilisation
CC BY-NC-ND 4.0
Citer cette ressource:
I_Fourier. (2017, 27 juin). Y. Tang - Exceptional splitting of reductions of abelian surfaces with real multiplication. [Vidéo]. Canal-U. https://www.canal-u.tv/97333. (Consultée le 27 juin 2022)
Contacter
Documentation

Dans la même collection

Sur le même thème