Conférence
Notice
Langue :
Anglais
Crédits
Jérémy MAGNIEN (Réalisation), Yunqing Tang (Intervention)
Conditions d'utilisation
CC BY-NC-ND 4.0
DOI : 10.60527/6bys-js68
Citer cette ressource :
Yunqing Tang. I_Fourier. (2017, 27 juin). Y. Tang - Exceptional splitting of reductions of abelian surfaces with real multiplication , in 2017. [Vidéo]. Canal-U. https://doi.org/10.60527/6bys-js68. (Consultée le 22 juin 2024)

Y. Tang - Exceptional splitting of reductions of abelian surfaces with real multiplication

Réalisation : 27 juin 2017 - Mise en ligne : 30 mars 2018
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
Descriptif

Chavdarov and Zywina showed that after passing to a suitable field extension, every abelian surface A with real multiplication over some number field has geometrically simple reduction modulo p for a density one set of primes p. One may ask whether its complement, the density zero set of primes p such that the reduction of A modulo p is not geometrically simple, is infinite. Such question is analogous to the study of exceptional mod p isogeny between two elliptic curves in the recent work of Charles. In this talk, I will discuss how to apply Charles's method to the setting of certain abelian surfaces with real multiplication. This is joint work with Ananth Shankar.

Intervention

Dans la même collection

Sur le même thème