Canal-U

Mon compte
Inria

2.6. Reducing the Key Size


Copier le code pour partager la vidéo :
<div style="position:relative;padding-bottom:56.25%;padding-top:10px;height:0;overflow:hidden;"><iframe src="https://www.canal-u.tv/video/inria/embed.1/2_6_reducing_the_key_size.32845?width=100%&amp;height=100%" style="position:absolute;top:0;left:0;width:100%;height: 100%;" width="550" height="306" frameborder="0" allowfullscreen scrolling="no"></iframe></div> Si vous souhaitez partager une séquence, indiquez le début de celle-ci , et copiez le code : h m s
Auteur(s) :
MARQUEZ-CORBELLA Irene
SENDRIER Nicolas
FINIASZ Matthieu

Producteur Canal-U :
Inria
Contacter la chaine
J’aime
Imprimer
partager facebook twitter

2.6. Reducing the Key Size

In the next three sessions, I will explain how to reduce the key size of code-based cryptosystem. Circulant matrices are the central point in many attempts to reduce the key size of code-based cryptosystems since they provide efficient representation. A circulant matrix is a square matrix, its rows are obtained by cyclically shifting the first row. An alternative representation of an n-tuple of elements is using polynomial. Thus, this matrix can be described by a polynomial. And the i-th row of a circulant matrix can be expressed by this formula. Circulant matrices are closed under product and sum. Thus, this operation preserves cyclicity. So, we have the following proposition. Circulant matrices of size r, with elements in Fq are equivalent to polynomials in this quotient ring.
Block-Circulant matrices are formed by concatenating circulant blocks of identical size. Quasi-cyclic codes have been defined as a linear code that admits a block-circulant matrix.  We will consider quasi-cyclic codes that can be written in block-circulant systematic form. Quasi-cyclic subcodes of BCH codes were proposed by Gaborit in 2005. Take notice that these codes can be efficiently decoded. Thus, there are suitable families for code-based cryptosystem. This table presents the parameters suggested by the author. Note that the key size for the same level of security drops considerably compared to the original scheme with Goppa code.  The minimum size for Goppa code is around 700 000  bits for 80 bits of security while with this security level with quasi-cyclic subcode of BCH code, we just need 12 000 bits.

  •  
    Label UNT : UNIT
  •  
    Date de réalisation : 5 Mai 2015
    Durée du programme : 4 min
    Classification Dewey : Analyse numérique, Théorie de l'information, données dans les systèmes informatiques, cryptographie, Mathématiques
  •  
    Catégorie : Vidéocours
    Niveau : niveau Master (LMD), niveau Doctorat (LMD), Recherche
    Disciplines : Mathématiques, Informatique, Informatique, Mathématiques et informatique
    Collections : 2: McEliece Cryptosystem
    ficheLom : Voir la fiche LOM
  •  
    Auteur(s) : MARQUEZ-CORBELLA Irene, SENDRIER Nicolas, FINIASZ Matthieu
  •  
    Langue : Anglais
    Mots-clés : algèbre linéaire, chiffrement à clé publique, cryptage des données, cryptographie, McEliece, LDPC, MDPC
    Conditions d’utilisation / Copyright : Ces ressources de cours sont, sauf mention contraire, diffusées sous Licence Creative Commons. L’utilisateur doit mentionner le nom de l’auteur, il peut exploiter l’œuvre sauf dans un contexte commercial et il ne peut apporter de modifications à l’œuvre originale.
 

commentaires


Ajouter un commentaire Lire les commentaires
*Les champs suivis d’un astérisque sont obligatoires.
Aucun commentaire sur cette vidéo pour le moment (les commentaires font l’objet d’une modération)
 

Dans la même collection

FMSH
 
Facebook Twitter
Mon Compte