5.6. La diversité des algorithmes informatiques
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
- audio 1 audio 2 audio 3
Descriptif
Nous n'avons vu dans ce cours qu'un exemple extrêmement réduit d'algorithme bio informatique. Il existe en effet une très grande diversité de ces algorithmes bio informatiques qui sont motivés par l'existence d'un très grand nombre de classes de problèmes. Nous allons lister quelques-unes de ces classes de problèmes sans viser l'exhaustivité bien entendu. La première classe c'est l'assemblage des "reads". Ceci commence dès la sortie du séquenceur. Rappelez-vous, en sortie d'un séquenceur NGS de nouvelle génération, on récupère un ensemble de "reads", des séquences relativement courtes de quelques dizaines de bases, en très grand nombre et qui se recouvrent. La problématique dite de l'assemblage consiste à utiliser ces zones de recouvrement pour ordonner les "reads" entre eux et reconstituer la séquence complète du génome, des algorithmes dits d'assemblage, qui se doivent d'être extrêmement rapides évidemment, compte tenu du nombre de "reads" à traiter. Problématique de la comparaison et de la projection de séquences : comparaison de séquences on l'a longuement étudiée. Projection de séquences ou "mapping". Un exemple, rappelez-vous quand nous avons parlé de la prédiction des gènes eucaryotes, nous avons dit qu'il était possible par des méthodes expérimentales de récupérer l'ARN messager mature, de le transformer en ADN, de le séquencer. On obtenait donc une séquence dite de CDNA. La problématique à ce niveau-là est de projeter cette séquence de CDNA sur la séquence d'ADN pour retrouver effectivement les exons, etc. Cette projection doit se faire en acceptant le fait qu'on peut avoir des correspondances partielles dans les zones projetées. Projection de séquences en anglais, "sequence mapping"...
Intervenants
Thèmes
Notice
Documentation
Dans la même collection
-
5.2. L’arbre, objet abstraitRechenmannFrançoisParmentelatThierry
Vous l'aurez compris un arbre phylogénétique est un arbre abstrait qui n'a qu'un lointain rapport métaphorique avec un véritable arbre. L'arbre des bio-informaticiens et des informaticiens se
-
5.1. L’arbre des espècesRechenmannFrançoisParmentelatThierry
Dans cette cinquième et dernière partie de notre cours sur le génome et les algorithmes, qui se veut une introduction à l'analyse informatique de l'information génétique, nous regarderons de plus près
-
5.5. Quand les différences sont trompeusesRechenmannFrançoisParmentelatThierry
Il y a plusieurs raisons pour lesquelles la méthode UPGMA, que nous venons de voir, se révèle simpliste. L'une des raisons par exemple, c'est pourquoi quand on recalcule les distances, quand on a
-
5.4. L’algorithme UPGMARechenmannFrançoisParmentelatThierry
L'algorithme, que nous allons étudier pour la reconstruction d'arbres phylogénétiques à partir des distances, s'appelle UPGMA. Un nom plutôt compliqué pour une méthode qui est plutôt simple. Et même,
-
5.3. Remplir un tableau de distancesRechenmannFrançoisParmentelatThierry
Pour tenter de construire l'arbre phylogénétique d'un ensemble d'espèces, nous allons utiliser les données et génotypique ou des données génotypiques disponibles sur ces espèces. Plus clairement, nous
-
5.7. Les applications en microbiologieRechenmannFrançoisParmentelatThierry
Une très grande diversité, on l'a vu, d'algorithmes en bio-informatique, motivé par la résolution de problèmes différents. Ces algorithmes, ces recherches en bio-informatique, s'appuient sur des
Avec les mêmes intervenants
-
4.8. Un algorithme récursifRechenmannFrançoisParmentelatThierry
Nous avons désormais en main tous les éléments pour écrire notre algorithme de détermination d'un alignement optimal, ici d'un chemin optimal. Avec les notations que nous avons introduites, je vous
-
5.2. L’arbre, objet abstraitRechenmannFrançoisParmentelatThierry
Vous l'aurez compris un arbre phylogénétique est un arbre abstrait qui n'a qu'un lointain rapport métaphorique avec un véritable arbre. L'arbre des bio-informaticiens et des informaticiens se
-
5.5. Quand les différences sont trompeusesRechenmannFrançoisParmentelatThierry
Il y a plusieurs raisons pour lesquelles la méthode UPGMA, que nous venons de voir, se révèle simpliste. L'une des raisons par exemple, c'est pourquoi quand on recalcule les distances, quand on a
-
4.7. Coûts et alignementRechenmannFrançoisParmentelatThierry
Nous avons vu l'ébauche de notre algorithme d'alignement optimal en considérant la possibilité de calculer le coût optimal, ou score optimal, de ce dernier noeud. Et nous avons vu que le coût de ce
-
4.4. L’alignement de séquences devient un problème d’optimisationRechenmannFrançoisParmentelatThierry
La distance de Hamming nous donne une première possibilité de mesurer la similarité entre 2 séquences. Mais elle ne reflète pas suffisamment la réalité biologique. Qu'est-ce que j'entends par là ? On
-
5.1. L’arbre des espècesRechenmannFrançoisParmentelatThierry
Dans cette cinquième et dernière partie de notre cours sur le génome et les algorithmes, qui se veut une introduction à l'analyse informatique de l'information génétique, nous regarderons de plus près
-
4.3. Quantifier la similarité de deux séquencesRechenmannFrançoisParmentelatThierry
Le principe est donc de rechercher, dans les bases de données, des séquences similaires à celles que nous sommes en train d'étudier. Nous faisons aussi l'hypothèse que plus les séquences sont
-
4.10. Cet algorithme est-il efficace ?RechenmannFrançoisParmentelatThierry
La version itérative de notre algorithme d'alignement optimal de séquences est indéniablement beaucoup plus efficace que sa version récursive, puisque nous avons vu qu'il permettait d'éviter que le
-
5.4. L’algorithme UPGMARechenmannFrançoisParmentelatThierry
L'algorithme, que nous allons étudier pour la reconstruction d'arbres phylogénétiques à partir des distances, s'appelle UPGMA. Un nom plutôt compliqué pour une méthode qui est plutôt simple. Et même,
-
4.6. Si un chemin est optimal, tous ses chemins partiels sont optimauxRechenmannFrançoisParmentelatThierry
Nous cherchons à concevoir un algorithme capable de déterminer l'alignement optimal de 2 séquences. Et nous avons vu que ça revient à chercher un algorithme qui recherche un chemin optimal dans une
-
5.7. Les applications en microbiologieRechenmannFrançoisParmentelatThierry
Une très grande diversité, on l'a vu, d'algorithmes en bio-informatique, motivé par la résolution de problèmes différents. Ces algorithmes, ces recherches en bio-informatique, s'appuient sur des
-
4.2. Évolution et similarité de séquencesRechenmannFrançoisParmentelatThierry
Avant de chercher à quantifier ce qu'est la similarité de séquence, on peut se poser la question même de savoir pourquoi des séquences de génome sont similaires entre organismes. La réponse tient dans
Sur le même thème
-
Opinion polarization and network segregation. Modelling a complex RelationshipFlacheAndreas
Recently, many societies seem to shift towards more polarization and volatility in opinions, for example in attitudes about immigration, climate policy, or the best policy response to Covid-19. A
-
21 Molecular Algorithms Using Reprogrammable DNA Self-AssemblyWoodsDamien
The history of computing tells us that computers can be made of almost anything: silicon, gears and levers, neurons, flowing water, interacting particles or even light. Although lithographically
-
Topological insights in neuroscienceHess BellwaldKathryn
Over the past decade, and particularly over the past five years, research at the interface of topology and neuroscience has grown remarkably fast. Topology has, for example, been successfully applied
-
Quelques algorithmes de calcul d'enveloppe convexe en 2DGiraultAlain
Le calcul de l'enveloppe convexe d'un nuage de points est un des problèmes fondamentaux en informatique, avec des applications multiples : traitement d'images, reconstruction 3D, détection de
-
Modélisation de la croissance des micro-organismesJongHidde de
La croissance microbienne peut être formulée comme un problème d'optimisation : comment allouer les ressources nutritives extraites de l'environnement aux différentes fonctions cellulaires afin de
-
Les mathématiques et la physique dans les effets spéciaux et les jeux vidéoNeyretFabrice
La synthèse d’images (parfois appelée « la 3D ») permet de créer dans l’ordinateur des mondes fictifs, ultra-réalistes ou de style cartoon selon l’envie des graphistes, des réalisateurs, des
-
Théorie de l’appariement et applications actuelles
Pourquoi y a-t-il tant de personnes sans emploi alors qu’au même moment un grand nombre de postes sont disponibles ? La théorie de l’appariement analyse ces problèmes où un certain nombre de
-
Caches, montrez-vous !DurandMarie
Les processeurs actuels permettent de l'ordre de quelques tera-opérations par seconde. Puissance nécessaire pour soutenir les besoins en simulation numérique, qui constitue, après la théorie et l
-
Self-Supervised Visual Learning and SynthesisEfrosAlexei A.
Computer vision has made impressive gains through the use of deep learning models, trained with large-scale labeled data. However, labels require expertise and curation and are expensive to collect.
-
CoNeCo: Concurrency, Networks and CoinductionSilvaAlexandra
In recent years, concurrent Kleene algebra (CKA), an extension of Kleene Algebra (KA) that includes concurrent composition as a first-class citizen, has been proposed by Hoare et al. as a setting to
-
Le numérique face aux enjeux environnementaux et sociétauxPradosEmmanuel
L’humanité est aujourd'hui confrontée à des défis sans précédent et étroitement entremêlés. Le risque d'effondrement environnemental et civilisationnel est désormais établi. Face à ces enjeux, de
-
« Pirater » l’humain. Données, manipulations et enjeux éthiquesCastellucciaClaude
Nos données personnelles sont collectées et utilisées en permanence par les services en ligne, comme Google ou Facebook ou encore exploitées par les publicitaires pour personnaliser les contenus ou