Notice
1.1. La cellule, atome du vivant
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
Descriptif
Bienvenue dans cette introduction conjointe aux notions fondamentales de génomique et d'algorithmique, autrement dit, de l'analyse informatique de l'information génétique, ce qu'on peut désigner de façon très synthétique par le terme un domaine scientifique qui est la bio informatique. Au cours de ces 5 parties, nous aborderons des notions fondamentales en commençant par évidemment l'ADN, les séquences génomiques, les textes des génomes, puis de gènes et de protéines et nous nous focaliserons plus particulièrement sur le processus de traduction de gènes en protéines, pour ensuite chercher à concevoir des algorithmes de prédiction de ces gènes dans les textes génomiques, des algorithmes également de comparaison de séquences qui nous permettront de fournir certains éléments sur les fonctions de ces gènes et protéines, et enfin nous verrons comment la connaissance des séquences génomiques d'espèces permet de reconstituer l'arbre d'évolution de ces espèces.
Intervention
Dans la même collection
-
1.9. Prédire l’origine de réplication
RechenmannFrançoisParmentelatThierryNous avons écrit un algorithme sympathique en ce qu'il dessine un chemin conforme à la succession des lettres d'une séquence génomique. Cet algorithme simple, au-delà du dessin qu'il produit, est-il
-
1.6. Contenu en G-C et A-T des séquences
RechenmannFrançoisParmentelatThierryLes algorithmes qui travaillent sur les séquences génomiques, sur les textes génomiques, doivent produire des résultats interprétables et utiles aux biologistes. Nous allons voir que même sur l
-
1.3. L’ADN code l’information génétique
RechenmannFrançoisParmentelatThierryL'ADN, cette longue molécule, porte l'information génétique. Autrement dit, l'information qui est nécessaire à la cellule pour fonctionner et se reproduire. Regardons de plus près cette information
-
1.7. Promenade sur l’ADN
RechenmannFrançoisParmentelatThierryQuand les biologistes se sont trouvés confrontés au premier texte génomique, dans la deuxième moitié des années 70, ils ont été quelque peu désemparés. On peut le comprendre. Encore une fois, regardez
-
1.5. Compter les nucléotides
RechenmannFrançoisParmentelatThierryNotre premier algorithme vise assez simplement à compter les nucléotides d'une séquence génomique, autrement dit à compter les lettres dans une chaîne de caractères. En entrée, cette chaîne de
-
1.10. Des fenêtres glissantes et recouvrantes
RechenmannFrançoisParmentelatThierryNotre sympathique algorithme de balade sur l'ADN, a permis de mettre en évidence des biais de composition de séquences, a fait apparaître sur le tracé un point de rebroussement que l'on peut
-
1.2. Au cœur de la cellule, la molécule d’ADN
RechenmannFrançoisParmentelatThierryAu cœur de chaque cellule se trouve donc la molécule d'ADN, flottant directement dans le cytoplasme dans le cas des cellules procaryotes, par exemple bactériennes, ou contenue dans le noyau des
-
1.8. Changer l’échelle du chemin
RechenmannFrançoisParmentelatThierryDans la session précédente, je vous ai proposé de m'accompagner dans une balade sur l'ADN. En fait un parcours de la séquence avec un tracé de segments, dont l'orientation dépendait de la lettre
-
1.4. Qu’est-ce qu’un algorithme ?
RechenmannFrançoisParmentelatThierryLes génomes peuvent donc être vus comme une longue suite de lettres écrites dans l'alphabet : A, C, G et T. Comment interpréter ces textes ? Ça va être le sujet de la bio-informatique à l'aide d
Avec les mêmes intervenants et intervenantes
-
1.8. Compressing the DNA walk
RechenmannFrançoisWe have written the algorithm for the circle DNA walk. Just a precision here: the kind of drawing we get has nothing to do with the physical drawing of the DNA molecule. It is a symbolic
-
2.7. The algorithm design trade-off
RechenmannFrançoisWe saw how to increase the efficiencyof our algorithm through the introduction of a data structure. Now let's see if we can do even better. We had a table of index and weexplain how the use of these
-
3.4. Predicting all the genes in a sequence
RechenmannFrançoisWe have written an algorithm whichis able to locate potential genes on a sequence but only on one phase because we are looking triplets after triplets. Now remember that the genes maybe located on
-
4.7. Alignment costs
RechenmannFrançoisWe have seen how we can compute the cost of the path ending on the last node of our grid if we know the cost of the sub-path ending on the three adjacent nodes. It is time now to see more deeply why
-
4.9. Recursion can be avoided: an iterative version
RechenmannFrançoisWe have written a recursive function to compute the optimal path that is an optimal alignment between two sequences. Here all the examples I gave were onDNA sequences, four letter alphabet. OK. The
-
1.3. DNA codes for genetic information
RechenmannFrançoisRemember at the heart of any cell,there is this very long molecule which is called a macromolecule for this reason, which is the DNA molecule. Now we will see that DNA molecules support what is called
-
2.1. The sequence as a model of DNA
RechenmannFrançoisWelcome back to our course on genomes and algorithms that is a computer analysis ofgenetic information. Last week we introduced the very basic concept in biology that is cell, DNA, genome, genes
-
2.9. Whole genome sequencing
RechenmannFrançoisSequencing is anexponential technology. The progresses in this technologyallow now to a sequence whole genome, complete genome. What does it mean? Well let'stake two examples: some twenty years ago,
-
3.7. Index and suffix trees
RechenmannFrançoisWe have seen with the Boyer-Moore algorithm how we can increase the efficiency of spin searching through the pre-processing of the pattern to be searched. Now we will see that an alternative way of
-
4.4. Aligning sequences is an optimization problem
RechenmannFrançoisWe have seen a nice and a quitesimple solution for measuring the similarity between two sequences. It relied on the so-called hammingdistance that is counting the number of differencesbetween two
-
5.2. The tree, an abstract object
RechenmannFrançoisWhen we speak of trees, of species,of phylogenetic trees, of course, it's a metaphoric view of a real tree. Our trees are abstract objects. Here is a tree and the different components of this tree.
-
1.6. GC and AT contents of DNA sequence
RechenmannFrançoisWe have designed our first algorithmfor counting nucleotides. Remember, what we have writtenin pseudo code is first declaration of variables. We have several integer variables that are variables which
Sur le même thème
-
Désassemblons le numérique - #Episode11 : Les algorithmes façonnent-ils notre société ?
SchwartzArnaudLima PillaLaércioEstériePierreSalletFrédéricFerbosAudeRoumanosRayyaChraibi KadoudIkramUn an après le tout premier hackathon sur les méthodologies d'enquêtes journalistiques sur les algorithmes, ce nouvel épisode part à la rencontre de différents points de vue sur les algorithmes.
-
Les machines à enseigner. Du livre à l'IA...
BruillardÉricQue peut-on, que doit-on déléguer à des machines ? C'est l'une des questions explorées par Éric Bruillard qui, du livre aux IA génératives, expose l'évolution des machines à enseigner...
-
Désassemblons le numérique - #Episode9 : Bientôt des supercalculateurs dans nos piscines ?
BeaumontOlivierBouzelRémiDes supercalculateurs feraient-ils bientôt leur apparition dans les piscines municipales pour les chauffer ? Réponses d'Olivier Beaumont, responsable de l'équipe-projet Topal, et Rémi Bouzel,
-
Le projet dnarXiv : Stockage de données sur des molécules d'ADN
LavenierDominiqueDuprazElsaLeblancJulienCoatrieuxGouenouDominique Lavenier, Elsa Dupraz, Julien Leblanc et Gouenou Coatrieux nous présentent le projet dnarXiv, un projet porté par le LabEx CominLabs qui explore le stockage de données sur des molécules d
-
Projection methods for community detection in complex networks
LitvakNellyCommunity detection is one of most prominent tasks in the analysis of complex networks such as social networks, biological networks, and the world wide web. A community is loosely defined as a group
-
Lara Croft. doing fieldwork under surveillance
Dall'AgnolaJasminLara Croft. Doing Fieldwork Under Surveillance Intervention de Jasmin Dall'Agnola (The George Washington University), dans le cadre du Colloque coorganisé par Anders Albrechtslund, professeur en
-
Containing predictive tokens in the EU
CzarnockiJanContaining Predictive Tokens in the EU – Mapping the Laws Against Digital Surveillance, intervention de Jan Czarnocki (KU Leuven), dans le cadre du Colloque coorganisé par Anders Albrechtslund,
-
Ivan Murit - Processus de création d'images
MuritIvanJe vais présenter une manière décalée d'aborder les outils d'impression. Pour cela nous ne partirons pas de l'envie d'imprimer une image préexistante, mais d'avant cela : comment se crée une forme
-
Le Creativ’Lab, au cœur de la robotique et de l’intelligence artificielle (ASR N°18 - LORIA)
HénaffPatrickLefebvreSylvainLe LORIA, laboratoire phare de la Grande Région dans le domaine de l’informatique, propose de rendre la recherche plus ouverte, plus collaborative, plus ambitieuse… en un mot, plus créative, à travers
-
Les algorithmes de Parcoursup
MathieuClaireL’objectif de la journée « Algorithmes d’aide à la décision publique » était de sensibiliser le grand public aux rôles des algorithmes d’aide à la décision publique utilisés par exemple pour l
-
Algorithmes d'aide à la décision publique / Ouverture
RéveillèreLaurentMaveyraud-TricoireSamuelBlancXavierBertrandYvesMainguenéMarcL’objectif de la journée « Algorithmes d’aide à la décision publique » était de sensibiliser le grand public aux rôles des algorithmes d’aide à la décision publique utilisés par exemple pour l
-
Quelques enjeux autour des algorithmes d'aide à la décision publique
TarissanFabienL’objectif de la journée « Algorithmes d’aide à la décision publique » était de sensibiliser le grand public aux rôles des algorithmes d’aide à la décision publique utilisés par exemple pour l