Notice
1.8. Changer l’échelle du chemin
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
Descriptif
Dans la session précédente, je vous ai proposé de m'accompagner dans une balade sur l'ADN. En fait un parcours de la séquence avec un tracé de segments, dont l'orientation dépendait de la lettre courante de la séquence et on a vu que ceci nous permettait effectivement de tracer un chemin. Et nous avons vu aussi très vite que nous étions rejoints par des contraintes matérielles qui étaient la taille de l'écran, le nombre de pixels qu'on pouvait afficher sur un écran, qui nous interdisait a priori d'afficher le tracé de l'ADN d'un génome de plusieurs millions de caractères.
Comment résoudre le problème ?
La réponse, c'est, eh bien on va changer l'échelle du dessin. Tout simplement de façon à ce que ce dessin puisse tenir systématiquement dans un écran de taille raisonnable. Quel est le principe ? Rappelez-vous, on a dessiné, tracé des segments, 4 segments différents suivant la lettre courante en cours de lecture dans la séquence. Et nous obtenons des chemin de ce genre-là. Donc a priori, vous voyez qu'on pourrait très vite, même si on faisait des segments plus petits, sortir de l'écran. Comment faire ? Eh bien au lieu de tracer tous les segments, on va en tracer un tous les N segments. Ici par exemple, au lieu de tracer tout ce chemin-là, je me contenterai de tracer celui-ci, et ensuite celui-ci et ensuite celui-ci. Là où il y avait 10 segments ou 15 segments ou 20 segments, j'en trace un. Et donc évidemment, je vais compacter mon chemin qui devrait pouvoir mieux tenir dans un écran. Je peux prendre un facteur de compaction de 10, de 15, de 20, voire de 1 000 si j'ai envie et si c'est nécessaire...
Intervention
Dans la même collection
-
1.4. Qu’est-ce qu’un algorithme ?
RechenmannFrançoisParmentelatThierryLes génomes peuvent donc être vus comme une longue suite de lettres écrites dans l'alphabet : A, C, G et T. Comment interpréter ces textes ? Ça va être le sujet de la bio-informatique à l'aide d
-
1.10. Des fenêtres glissantes et recouvrantes
RechenmannFrançoisParmentelatThierryNotre sympathique algorithme de balade sur l'ADN, a permis de mettre en évidence des biais de composition de séquences, a fait apparaître sur le tracé un point de rebroussement que l'on peut
-
1.1. La cellule, atome du vivant
RechenmannFrançoisParmentelatThierryBienvenue dans cette introduction conjointe aux notions fondamentales de génomique et d'algorithmique, autrement dit, de l'analyse informatique de l'information génétique, ce qu'on peut désigner de
-
1.6. Contenu en G-C et A-T des séquences
RechenmannFrançoisParmentelatThierryLes algorithmes qui travaillent sur les séquences génomiques, sur les textes génomiques, doivent produire des résultats interprétables et utiles aux biologistes. Nous allons voir que même sur l
-
1.3. L’ADN code l’information génétique
RechenmannFrançoisParmentelatThierryL'ADN, cette longue molécule, porte l'information génétique. Autrement dit, l'information qui est nécessaire à la cellule pour fonctionner et se reproduire. Regardons de plus près cette information
-
1.9. Prédire l’origine de réplication
RechenmannFrançoisParmentelatThierryNous avons écrit un algorithme sympathique en ce qu'il dessine un chemin conforme à la succession des lettres d'une séquence génomique. Cet algorithme simple, au-delà du dessin qu'il produit, est-il
-
1.5. Compter les nucléotides
RechenmannFrançoisParmentelatThierryNotre premier algorithme vise assez simplement à compter les nucléotides d'une séquence génomique, autrement dit à compter les lettres dans une chaîne de caractères. En entrée, cette chaîne de
-
1.2. Au cœur de la cellule, la molécule d’ADN
RechenmannFrançoisParmentelatThierryAu cœur de chaque cellule se trouve donc la molécule d'ADN, flottant directement dans le cytoplasme dans le cas des cellules procaryotes, par exemple bactériennes, ou contenue dans le noyau des
-
1.7. Promenade sur l’ADN
RechenmannFrançoisParmentelatThierryQuand les biologistes se sont trouvés confrontés au premier texte génomique, dans la deuxième moitié des années 70, ils ont été quelque peu désemparés. On peut le comprendre. Encore une fois, regardez
Avec les mêmes intervenants et intervenantes
-
1.4. What is an algorithm?
RechenmannFrançoisWe have seen that a genomic textcan be indeed a very long sequence of characters. And to interpret this sequence of characters, we will need to use computers. Using computers means writing program.
-
2.2. Genes: from Mendel to molecular biology
RechenmannFrançoisThe notion of gene emerged withthe works of Gregor Mendel. Mendel studied the inheritance on some traits like the shape of pea plant seeds,through generations. He stated the famous laws of inheritance
-
2.10. How to find genes?
RechenmannFrançoisGetting the sequence of the genome is only the beginning, as I explained, once you have the sequence what you want to do is to locate the gene, to predict the function of the gene and maybe study the
-
3.8. Probabilistic methods
RechenmannFrançoisUp to now, to predict our gene,we only rely on the process of searching certain strings or patterns. In order to further improve our gene predictor, the idea is to use, to rely onprobabilistic methods
-
4.3. Measuring sequence similarity
RechenmannFrançoisSo we understand why gene orprotein sequences may be similar. It's because they evolve togetherwith the species and they evolve in time, there aremodifications in the sequence and that the sequence
-
5.3. Building an array of distances
RechenmannFrançoisSo using the sequences of homologous gene between several species, our aim is to reconstruct phylogenetic tree of the corresponding species. For this, we have to comparesequences and compute distances
-
1.7. DNA walk
RechenmannFrançoisWe will now design a more graphical algorithm which is called "the DNA walk". We shall see what does it mean "DNA walk". Walk on to DNA. Something like that, yes. But first, just have a look again at
-
2.6. Algorithms + data structures = programs
RechenmannFrançoisBy writing the Lookup GeneticCode Function, we completed our translation algorithm. So we may ask the question about the algorithm, does it terminate? Andthe answer is yes, obviously. Is it pertinent,
-
3.3. Searching for start and stop codons
RechenmannFrançoisWe have written an algorithm for finding genes. But you remember that we arestill to write the two functions for finding the next stop codonand the next start codon. Let's see how we can do that. We
-
4.1. How to predict gene/protein functions?
RechenmannFrançoisLast week we have seen that annotating a genome means first locating the genes on the DNA sequences that is the genes, the region coding for proteins. But this is indeed the first step,the next very
-
4.10. How efficient is this algorithm?
RechenmannFrançoisWe have seen the principle of an iterative algorithm in two paths for aligning and comparing two sequences of characters, here DNA sequences. And we understoodwhy the iterative version is much more
-
5.7. The application domains in microbiology
RechenmannFrançoisBioinformatics relies on many domains of mathematics and computer science. Of course, algorithms themselves on character strings are important in bioinformatics, we have seen them. Algorithms and
Sur le même thème
-
Machines algorithmiques, mythes et réalités
MazenodVincentVincent Mazenod, informaticien, partage le fruit de ses réflexions sur l'évolution des outils numériques, en lien avec les problématiques de souveraineté, de sécurité et de vie privée...
-
Désassemblons le numérique - #Episode11 : Les algorithmes façonnent-ils notre société ?
SchwartzArnaudLima PillaLaércioEstériePierreSalletFrédéricFerbosAudeRoumanosRayyaChraibi KadoudIkramUn an après le tout premier hackathon sur les méthodologies d'enquêtes journalistiques sur les algorithmes, ce nouvel épisode part à la rencontre de différents points de vue sur les algorithmes.
-
Les machines à enseigner. Du livre à l'IA...
BruillardÉricQue peut-on, que doit-on déléguer à des machines ? C'est l'une des questions explorées par Éric Bruillard qui, du livre aux IA génératives, expose l'évolution des machines à enseigner...
-
Désassemblons le numérique - #Episode9 : Bientôt des supercalculateurs dans nos piscines ?
BeaumontOlivierBouzelRémiDes supercalculateurs feraient-ils bientôt leur apparition dans les piscines municipales pour les chauffer ? Réponses d'Olivier Beaumont, responsable de l'équipe-projet Topal, et Rémi Bouzel,
-
Le projet dnarXiv : Stockage de données sur des molécules d'ADN
LavenierDominiqueDuprazElsaLeblancJulienCoatrieuxGouenouDominique Lavenier, Elsa Dupraz, Julien Leblanc et Gouenou Coatrieux nous présentent le projet dnarXiv, un projet porté par le LabEx CominLabs qui explore le stockage de données sur des molécules d
-
Projection methods for community detection in complex networks
LitvakNellyCommunity detection is one of most prominent tasks in the analysis of complex networks such as social networks, biological networks, and the world wide web. A community is loosely defined as a group
-
Lara Croft. doing fieldwork under surveillance
Dall'AgnolaJasminLara Croft. Doing Fieldwork Under Surveillance Intervention de Jasmin Dall'Agnola (The George Washington University), dans le cadre du Colloque coorganisé par Anders Albrechtslund, professeur en
-
Containing predictive tokens in the EU
CzarnockiJanContaining Predictive Tokens in the EU – Mapping the Laws Against Digital Surveillance, intervention de Jan Czarnocki (KU Leuven), dans le cadre du Colloque coorganisé par Anders Albrechtslund,
-
Ivan Murit - Processus de création d'images
MuritIvanJe vais présenter une manière décalée d'aborder les outils d'impression. Pour cela nous ne partirons pas de l'envie d'imprimer une image préexistante, mais d'avant cela : comment se crée une forme
-
Le Creativ’Lab, au cœur de la robotique et de l’intelligence artificielle (ASR N°18 - LORIA)
HénaffPatrickLefebvreSylvainLe LORIA, laboratoire phare de la Grande Région dans le domaine de l’informatique, propose de rendre la recherche plus ouverte, plus collaborative, plus ambitieuse… en un mot, plus créative, à travers
-
Les algorithmes de Parcoursup
MathieuClaireL’objectif de la journée « Algorithmes d’aide à la décision publique » était de sensibiliser le grand public aux rôles des algorithmes d’aide à la décision publique utilisés par exemple pour l
-
Algorithmes d'aide à la décision publique / Ouverture
RéveillèreLaurentMaveyraud-TricoireSamuelBlancXavierBertrandYvesMainguenéMarcL’objectif de la journée « Algorithmes d’aide à la décision publique » était de sensibiliser le grand public aux rôles des algorithmes d’aide à la décision publique utilisés par exemple pour l