Notice
1.10. Des fenêtres glissantes et recouvrantes
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
Descriptif
Notre sympathique algorithme de balade sur l'ADN, a permis de mettre en évidence des biais de composition de séquences, a fait apparaître sur le tracé un point de rebroussement que l'on peut interpréter comme étant l'origine de réplication. On peut donc être fier d'avoir un algorithme qui serait capable de prédire l'origine de réplication sur un génome bactérien.
Alors il faut toujours rester très modeste en bio-informatique tout simplement parce qu'on a affaire à des situations biologiques, et que la variabilité des situations biologiques est très élevée. J'en donne pour preuve l'application de ce même algorithme tracé sur le génome de Synechocystis, et vous voyez là un dessin qui ressemble plus aux gribouillis de ma petite fille qu'aux jolis tracés bien interprétables qu'on avait sur Borrelia Burgdoferi.
Alors ne soyons pas défaitistes pour autant, il faut souligner ici que Synechocystis c'est ce qu'on appelle une "archée-bactérie", c'est-à-dire d'une catégorie de bactéries particulières. Il se trouve que l'algorithme de détection des biais, et donc de l'origine de réplication, marche plutôt bien sur les bactéries. Mais on voudrait le systématiser et c'est-à-dire le rendre non visuel, être capable de faire des prédictions plus quantitatives de cette origine de réplication. Donc nous allons développer un nouvel algorithme qui cette fois-ci va être quantitatif et qui devrait nous permettre, là encore, de détecter ces biais. Il sera légèrement différent. Regardons pourquoi...
ERRATUM
Une erreur a été repérée dans le code de la slide 12 (cf. onglet Erratum pour la correction).
Intervention
Thème
Documentation
Erratum
Une erreur a été repérée dans le code de la slide 12, ci-dessous la correction :
Dans la même collection
-
1.8. Changer l’échelle du chemin
RechenmannFrançoisParmentelatThierryDans la session précédente, je vous ai proposé de m'accompagner dans une balade sur l'ADN. En fait un parcours de la séquence avec un tracé de segments, dont l'orientation dépendait de la lettre
-
1.4. Qu’est-ce qu’un algorithme ?
RechenmannFrançoisParmentelatThierryLes génomes peuvent donc être vus comme une longue suite de lettres écrites dans l'alphabet : A, C, G et T. Comment interpréter ces textes ? Ça va être le sujet de la bio-informatique à l'aide d
-
1.9. Prédire l’origine de réplication
RechenmannFrançoisParmentelatThierryNous avons écrit un algorithme sympathique en ce qu'il dessine un chemin conforme à la succession des lettres d'une séquence génomique. Cet algorithme simple, au-delà du dessin qu'il produit, est-il
-
1.1. La cellule, atome du vivant
RechenmannFrançoisParmentelatThierryBienvenue dans cette introduction conjointe aux notions fondamentales de génomique et d'algorithmique, autrement dit, de l'analyse informatique de l'information génétique, ce qu'on peut désigner de
-
1.6. Contenu en G-C et A-T des séquences
RechenmannFrançoisParmentelatThierryLes algorithmes qui travaillent sur les séquences génomiques, sur les textes génomiques, doivent produire des résultats interprétables et utiles aux biologistes. Nous allons voir que même sur l
-
1.3. L’ADN code l’information génétique
RechenmannFrançoisParmentelatThierryL'ADN, cette longue molécule, porte l'information génétique. Autrement dit, l'information qui est nécessaire à la cellule pour fonctionner et se reproduire. Regardons de plus près cette information
-
1.7. Promenade sur l’ADN
RechenmannFrançoisParmentelatThierryQuand les biologistes se sont trouvés confrontés au premier texte génomique, dans la deuxième moitié des années 70, ils ont été quelque peu désemparés. On peut le comprendre. Encore une fois, regardez
-
1.5. Compter les nucléotides
RechenmannFrançoisParmentelatThierryNotre premier algorithme vise assez simplement à compter les nucléotides d'une séquence génomique, autrement dit à compter les lettres dans une chaîne de caractères. En entrée, cette chaîne de
-
1.2. Au cœur de la cellule, la molécule d’ADN
RechenmannFrançoisParmentelatThierryAu cœur de chaque cellule se trouve donc la molécule d'ADN, flottant directement dans le cytoplasme dans le cas des cellules procaryotes, par exemple bactériennes, ou contenue dans le noyau des
Avec les mêmes intervenants et intervenantes
-
1.1. The cell, atom of the living world
RechenmannFrançoisWelcome to this introduction to bioinformatics. We will speak of genomes and algorithms. More specifically, we will see how genetic information can be analysed by algorithms. In these five weeks to
-
1.9. Predicting the origin of DNA replication?
RechenmannFrançoisWe have seen a nice algorithm to draw, let's say, a DNA sequence. We will see that first, we have to correct a little bit this algorithm. And then we will see how such as imple algorithm can provide
-
2.8. DNA sequencing
RechenmannFrançoisDuring the last session, I explained several times how it was important to increase the efficiency of sequences processing algorithm because sequences arevery long and there are large volumes of
-
3.5. Making the predictions more reliable
RechenmannFrançoisWe have got a bacterial gene predictor but the way this predictor works is rather crude and if we want to have more reliable results, we have to inject into this algorithmmore biological knowledge. We
-
4.6. A path is optimal if all its sub-paths are optimal
RechenmannFrançoisA sequence alignment between two sequences is a path in a grid. So that, an optimal sequence alignmentis an optimal path in the same grid. We'll see now that a property of this optimal path provides
-
5.1. The tree of life
RechenmannFrançoisWelcome to this fifth and last week of our course on genomes and algorithms that is the computer analysis of genetic information. During this week, we will firstsee what phylogenetic trees are and how
-
1.4. What is an algorithm?
RechenmannFrançoisWe have seen that a genomic textcan be indeed a very long sequence of characters. And to interpret this sequence of characters, we will need to use computers. Using computers means writing program.
-
2.2. Genes: from Mendel to molecular biology
RechenmannFrançoisThe notion of gene emerged withthe works of Gregor Mendel. Mendel studied the inheritance on some traits like the shape of pea plant seeds,through generations. He stated the famous laws of inheritance
-
2.10. How to find genes?
RechenmannFrançoisGetting the sequence of the genome is only the beginning, as I explained, once you have the sequence what you want to do is to locate the gene, to predict the function of the gene and maybe study the
-
3.8. Probabilistic methods
RechenmannFrançoisUp to now, to predict our gene,we only rely on the process of searching certain strings or patterns. In order to further improve our gene predictor, the idea is to use, to rely onprobabilistic methods
-
4.3. Measuring sequence similarity
RechenmannFrançoisSo we understand why gene orprotein sequences may be similar. It's because they evolve togetherwith the species and they evolve in time, there aremodifications in the sequence and that the sequence
-
5.3. Building an array of distances
RechenmannFrançoisSo using the sequences of homologous gene between several species, our aim is to reconstruct phylogenetic tree of the corresponding species. For this, we have to comparesequences and compute distances
Sur le même thème
-
Machines algorithmiques, mythes et réalités
MazenodVincentVincent Mazenod, informaticien, partage le fruit de ses réflexions sur l'évolution des outils numériques, en lien avec les problématiques de souveraineté, de sécurité et de vie privée...
-
Désassemblons le numérique - #Episode11 : Les algorithmes façonnent-ils notre société ?
SchwartzArnaudLima PillaLaércioEstériePierreSalletFrédéricFerbosAudeRoumanosRayyaChraibi KadoudIkramUn an après le tout premier hackathon sur les méthodologies d'enquêtes journalistiques sur les algorithmes, ce nouvel épisode part à la rencontre de différents points de vue sur les algorithmes.
-
Les machines à enseigner. Du livre à l'IA...
BruillardÉricQue peut-on, que doit-on déléguer à des machines ? C'est l'une des questions explorées par Éric Bruillard qui, du livre aux IA génératives, expose l'évolution des machines à enseigner...
-
Désassemblons le numérique - #Episode9 : Bientôt des supercalculateurs dans nos piscines ?
BeaumontOlivierBouzelRémiDes supercalculateurs feraient-ils bientôt leur apparition dans les piscines municipales pour les chauffer ? Réponses d'Olivier Beaumont, responsable de l'équipe-projet Topal, et Rémi Bouzel,
-
Le projet dnarXiv : Stockage de données sur des molécules d'ADN
LavenierDominiqueDuprazElsaLeblancJulienCoatrieuxGouenouDominique Lavenier, Elsa Dupraz, Julien Leblanc et Gouenou Coatrieux nous présentent le projet dnarXiv, un projet porté par le LabEx CominLabs qui explore le stockage de données sur des molécules d
-
Projection methods for community detection in complex networks
LitvakNellyCommunity detection is one of most prominent tasks in the analysis of complex networks such as social networks, biological networks, and the world wide web. A community is loosely defined as a group
-
Lara Croft. doing fieldwork under surveillance
Dall'AgnolaJasminLara Croft. Doing Fieldwork Under Surveillance Intervention de Jasmin Dall'Agnola (The George Washington University), dans le cadre du Colloque coorganisé par Anders Albrechtslund, professeur en
-
Containing predictive tokens in the EU
CzarnockiJanContaining Predictive Tokens in the EU – Mapping the Laws Against Digital Surveillance, intervention de Jan Czarnocki (KU Leuven), dans le cadre du Colloque coorganisé par Anders Albrechtslund,
-
Ivan Murit - Processus de création d'images
MuritIvanJe vais présenter une manière décalée d'aborder les outils d'impression. Pour cela nous ne partirons pas de l'envie d'imprimer une image préexistante, mais d'avant cela : comment se crée une forme
-
Le Creativ’Lab, au cœur de la robotique et de l’intelligence artificielle (ASR N°18 - LORIA)
HénaffPatrickLefebvreSylvainLe LORIA, laboratoire phare de la Grande Région dans le domaine de l’informatique, propose de rendre la recherche plus ouverte, plus collaborative, plus ambitieuse… en un mot, plus créative, à travers
-
Les algorithmes de Parcoursup
MathieuClaireL’objectif de la journée « Algorithmes d’aide à la décision publique » était de sensibiliser le grand public aux rôles des algorithmes d’aide à la décision publique utilisés par exemple pour l
-
Algorithmes d'aide à la décision publique / Ouverture
RéveillèreLaurentMaveyraud-TricoireSamuelBlancXavierBertrandYvesMainguenéMarcL’objectif de la journée « Algorithmes d’aide à la décision publique » était de sensibiliser le grand public aux rôles des algorithmes d’aide à la décision publique utilisés par exemple pour l