Notice
1.6. Contenu en G-C et A-T des séquences
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
Descriptif
Les algorithmes qui travaillent sur les séquences génomiques, sur les textes génomiques, doivent produire des résultats interprétables et utiles aux biologistes. Nous allons voir que même sur l'algorithme très simple que nous avons construit de comptage de nucléotides, eh bien cet algorithme produit des résultats qui ont effectivement
Revenons sur cet algorithme. Souvenez-vous : déclaration des variables, des entités, que nous allons manipuler dans l'algorithme, initialisation de ces variables. Si vous n'initialisez pas les variables correctement, les comptages ne partiront pas de la bonne valeur. Donc initialisation des variables. Et ensuite, les instructions proprement dites. Ici, identification "Est-ce que c'est un A, un G, un T ? " et incrémentation du compteur correspondant. Incrémentation du nombre de caractères, indépendamment que ça soit un A, C, G ou T. Et progression de l'index le long de la séquence jusqu'à ce qu'on arrive sur le caractère qui marque la fin de la séquence.
Cet algorithme doit effectivement exposer ces résultats et c'est pour ça que nous avions rajouté des ordres d'affichage, de longueur de la séquence avec le compteur total NB et du pourcentage de A dans la séquence, de C, de G et de T à travers ces formules de calculs très simples...
Intervention
Dans la même collection
-
1.5. Compter les nucléotides
RECHENMANN François
PARMENTELAT Thierry
Notre premier algorithme vise assez simplement à compter les nucléotides d'une séquence génomique, autrement dit à compter les lettres dans une chaîne de caractères. En entrée, cette chaîne de
-
1.2. Au cœur de la cellule, la molécule d’ADN
RECHENMANN François
PARMENTELAT Thierry
Au cœur de chaque cellule se trouve donc la molécule d'ADN, flottant directement dans le cytoplasme dans le cas des cellules procaryotes, par exemple bactériennes, ou contenue dans le noyau des
-
1.7. Promenade sur l’ADN
RECHENMANN François
PARMENTELAT Thierry
Quand les biologistes se sont trouvés confrontés au premier texte génomique, dans la deuxième moitié des années 70, ils ont été quelque peu désemparés. On peut le comprendre. Encore une fois, regardez
-
1.4. Qu’est-ce qu’un algorithme ?
RECHENMANN François
PARMENTELAT Thierry
Les génomes peuvent donc être vus comme une longue suite de lettres écrites dans l'alphabet : A, C, G et T. Comment interpréter ces textes ? Ça va être le sujet de la bio-informatique à l'aide d
-
1.10. Des fenêtres glissantes et recouvrantes
RECHENMANN François
PARMENTELAT Thierry
Notre sympathique algorithme de balade sur l'ADN, a permis de mettre en évidence des biais de composition de séquences, a fait apparaître sur le tracé un point de rebroussement que l'on peut
-
1.1. La cellule, atome du vivant
RECHENMANN François
PARMENTELAT Thierry
Bienvenue dans cette introduction conjointe aux notions fondamentales de génomique et d'algorithmique, autrement dit, de l'analyse informatique de l'information génétique, ce qu'on peut désigner de
-
1.8. Changer l’échelle du chemin
RECHENMANN François
PARMENTELAT Thierry
Dans la session précédente, je vous ai proposé de m'accompagner dans une balade sur l'ADN. En fait un parcours de la séquence avec un tracé de segments, dont l'orientation dépendait de la lettre
-
1.3. L’ADN code l’information génétique
RECHENMANN François
PARMENTELAT Thierry
L'ADN, cette longue molécule, porte l'information génétique. Autrement dit, l'information qui est nécessaire à la cellule pour fonctionner et se reproduire. Regardons de plus près cette information
-
1.9. Prédire l’origine de réplication
RECHENMANN François
PARMENTELAT Thierry
Nous avons écrit un algorithme sympathique en ce qu'il dessine un chemin conforme à la succession des lettres d'une séquence génomique. Cet algorithme simple, au-delà du dessin qu'il produit, est-il
Avec les mêmes intervenants et intervenantes
-
1.3. DNA codes for genetic information
RECHENMANN François
Remember at the heart of any cell,there is this very long molecule which is called a macromolecule for this reason, which is the DNA molecule. Now we will see that DNA molecules support what is called
-
2.1. The sequence as a model of DNA
RECHENMANN François
Welcome back to our course on genomes and algorithms that is a computer analysis ofgenetic information. Last week we introduced the very basic concept in biology that is cell, DNA, genome, genes
-
2.9. Whole genome sequencing
RECHENMANN François
Sequencing is anexponential technology. The progresses in this technologyallow now to a sequence whole genome, complete genome. What does it mean? Well let'stake two examples: some twenty years ago,
-
3.7. Index and suffix trees
RECHENMANN François
We have seen with the Boyer-Moore algorithm how we can increase the efficiency of spin searching through the pre-processing of the pattern to be searched. Now we will see that an alternative way of
-
4.4. Aligning sequences is an optimization problem
RECHENMANN François
We have seen a nice and a quitesimple solution for measuring the similarity between two sequences. It relied on the so-called hammingdistance that is counting the number of differencesbetween two
-
5.2. The tree, an abstract object
RECHENMANN François
When we speak of trees, of species,of phylogenetic trees, of course, it's a metaphoric view of a real tree. Our trees are abstract objects. Here is a tree and the different components of this tree.
-
1.6. GC and AT contents of DNA sequence
RECHENMANN François
We have designed our first algorithmfor counting nucleotides. Remember, what we have writtenin pseudo code is first declaration of variables. We have several integer variables that are variables which
-
2.5. Implementing the genetic code
RECHENMANN François
Remember we were designing our translation algorithm and since we are a bit lazy, we decided to make the hypothesis that there was the adequate function forimplementing the genetic code. It's now time
-
3.2. A simple algorithm for gene prediction
RECHENMANN François
Based on the principle we statedin the last session, we will now write in pseudo code a firstalgorithm for locating genes on a bacterial genome. Remember first how this algorithm should work, we first
-
3.10. Gene prediction in eukaryotic genomes
RECHENMANN François
If it is possible to have verygood predictions for bacterial genes, it's certainly not the caseyet for eukaryotic genomes. Eukaryotic cells have manydifferences in comparison to prokaryotic cells. You
-
4.8. A recursive algorithm
RECHENMANN François
We have seen how we can computethe optimal cost, the ending node of our grid if we know the optimal cost of the three adjacent nodes. This is this computation scheme we can see here using the notation
-
5.6. The diversity of bioinformatics algorithms
RECHENMANN François
In this course, we have seen a very little set of bioinformatic algorithms. There exist numerous various algorithms in bioinformatics which deal with a large span of classes of problems. For example,
Sur le même thème
-
The tree of life
ABBY Sophie
Les Rencontres Exobiologiques pour Doctorants (RED) sont une école de formation sur les « bases de l'astrobiologie ». L’édition 2025 s’est tenue du 16 au 21 mars au Parc Ornithologique du Teich.
-
Machines algorithmiques, mythes et réalités
MAZENOD Vincent
Vincent Mazenod, informaticien, partage le fruit de ses réflexions sur l'évolution des outils numériques, en lien avec les problématiques de souveraineté, de sécurité et de vie privée...
-
Désassemblons le numérique - #Episode11 : Les algorithmes façonnent-ils notre société ?
SCHWARTZ Arnaud
LIMA PILLA Laércio
ESTéRIE Pierre
SALLET Frédéric
FERBOS Aude
ROUMANOS Rayya
CHRAIBI KADOUD Ikram
Un an après le tout premier hackathon sur les méthodologies d'enquêtes journalistiques sur les algorithmes, ce nouvel épisode part à la rencontre de différents points de vue sur les algorithmes.
-
Les machines à enseigner. Du livre à l'IA...
BRUILLARD Éric
Que peut-on, que doit-on déléguer à des machines ? C'est l'une des questions explorées par Éric Bruillard qui, du livre aux IA génératives, expose l'évolution des machines à enseigner...
-
Désassemblons le numérique - #Episode9 : Bientôt des supercalculateurs dans nos piscines ?
BEAUMONT Olivier
BOUZEL Rémi
Des supercalculateurs feraient-ils bientôt leur apparition dans les piscines municipales pour les chauffer ? Réponses d'Olivier Beaumont, responsable de l'équipe-projet Topal, et Rémi Bouzel,
-
Le projet dnarXiv : Stockage de données sur des molécules d'ADN
LAVENIER Dominique
DUPRAZ Elsa
LEBLANC Julien
COATRIEUX Gouenou
Dominique Lavenier, Elsa Dupraz, Julien Leblanc et Gouenou Coatrieux nous présentent le projet dnarXiv, un projet porté par le LabEx CominLabs qui explore le stockage de données sur des molécules d
-
Projection methods for community detection in complex networks
LITVAK Nelly
Community detection is one of most prominent tasks in the analysis of complex networks such as social networks, biological networks, and the world wide web. A community is loosely defined as a group
-
Lara Croft. doing fieldwork under surveillance
DALL'AGNOLA Jasmin
Lara Croft. Doing Fieldwork Under Surveillance Intervention de Jasmin Dall'Agnola (The George Washington University), dans le cadre du Colloque coorganisé par Anders Albrechtslund, professeur en
-
Containing predictive tokens in the EU
CZARNOCKI Jan
Containing Predictive Tokens in the EU – Mapping the Laws Against Digital Surveillance, intervention de Jan Czarnocki (KU Leuven), dans le cadre du Colloque coorganisé par Anders Albrechtslund,
-
Ivan Murit - Processus de création d'images
MURIT Ivan
Je vais présenter une manière décalée d'aborder les outils d'impression. Pour cela nous ne partirons pas de l'envie d'imprimer une image préexistante, mais d'avant cela : comment se crée une forme
-
Le Creativ’Lab, au cœur de la robotique et de l’intelligence artificielle (ASR N°18 - LORIA)
HéNAFF Patrick
LEFEBVRE Sylvain
Le LORIA, laboratoire phare de la Grande Région dans le domaine de l’informatique, propose de rendre la recherche plus ouverte, plus collaborative, plus ambitieuse… en un mot, plus créative, à travers
-
Les algorithmes de Parcoursup
MATHIEU Claire
L’objectif de la journée « Algorithmes d’aide à la décision publique » était de sensibiliser le grand public aux rôles des algorithmes d’aide à la décision publique utilisés par exemple pour l