Notice
2.7. Les compromis de la conception d’algorithmes
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
Descriptif
La mise en oeuvre d'une structure de données appropriée permet, nous l'avons vu, d'améliorer les performances d'algorithmes. Nous en avons vu l'exemple sur la recherche d'un triplet dans un tableau de code génétique, quand nous avons ajouté ces tables d'index, nous avons vu que nous avons diminué de façon tout à fait significative, le nombre de comparaisons à effectuer. Je vous propose maintenant une autre approche où les index ne sont pas sous forme de table mais sont calculés. Il faut que vous vous souveniez de la manière dont le tableau est organisé. D'abord tous les triplets qui commencent par T, tous ceux qui commencent par C, par A, par G. À l'intérieur de cette partie-là du tableau, d'abord tous les triplets dont la deuxième lettre est un T, et cetera, et cetera. Nous allons tirer partie encore une fois de cette organisation, mais d'une manière différente de ce que nous avons fait jusqu'à présent...
Intervention / Responsable scientifique
Thème
Documentation
Dans la même collection
-
2.6. Algorithmes + structures de données = programmes
RechenmannFrançoisParmentelatThierryEn écrivant le code de la fonction, qui recherche un triplet dans le tableau qui implémente le code génétique, nous avons terminé et obtenu un algorithme de traduction d'une séquence d'ADN, voire d
-
2.1. La séquence est-elle un bon modèle de l’ADN ?
RechenmannFrançoisParmentelatThierryL'ADN porte l'information génétique, plus précisément l'ADN porte les gènes, c'est-à-dire les régions de cette molécule qui portent l'information utilisée par la cellule pour synthétiser les protéines
-
2.10. Comment trouver les gènes ?
RechenmannFrançoisParmentelatThierryL'obtention de la séquence complète d'un génome d'un organisme vivant est certes un beau résultat, mais c'est en fait le début d'une longue phase d'interprétation, d'annotations et de comparaisons.
-
2.4. Un algorithme de traduction
RechenmannFrançoisParmentelatThierryUne protéine, en tant que succession d'acides aminés, peut-être vue comme le résultat d'un processus de traduction d'une chaîne de caractères écrite dans un alphabet de 4 lettres en une autre chaîne
-
2.8. Les technologies de séquençage de l’ADN
RechenmannFrançoisParmentelatThierryNous parlons beaucoup dans ce cours de séquences génomiques ou séquences d'ADN, que nous voyons pour des raisons algorithmiques sous forme de chaînes de caractères. Comment ces séquences, ces chaînes
-
2.2. Les gènes, de Mendel à la biologie moléculaire
RechenmannFrançoisParmentelatThierryLa séquence de caractères est un bon modèle de l'ADN, un des modèles possibles de l'ADN et il est bon parce qu'il est utile. On va voir en particulier que ce modèle simple peut servir de support à de
-
2.5. Implémenter le code génétique
RechenmannFrançoisParmentelatThierryNous avons écrit le corps de l'algorithme de traduction, et nous avons fractionné la complexité d'écriture de cet algorithme en faisant appel à une fonction qui recherche dans le tableau, qui
-
2.9. Le séquençage de génomes complets
RechenmannFrançoisParmentelatThierryLes progrès dans les technologies de séquençage ont permis d'aborder le séquençage complet de génome. Là encore, les progrès ont été spectaculaires. Prenons l'exemple du projet de séquençage de la
-
2.3. Le code génétique
RechenmannFrançoisParmentelatThierryGènes et protéines, mais qu'est-ce qu'une protéine ? Une protéine, c'est également une molécule qui est constituée d'une succession de ce que l'on appelle les acides aminés. C'est donc une chaîne d
Avec les mêmes intervenants et intervenantes
-
2.5. Implementing the genetic code
RechenmannFrançoisRemember we were designing our translation algorithm and since we are a bit lazy, we decided to make the hypothesis that there was the adequate function forimplementing the genetic code. It's now time
-
3.2. A simple algorithm for gene prediction
RechenmannFrançoisBased on the principle we statedin the last session, we will now write in pseudo code a firstalgorithm for locating genes on a bacterial genome. Remember first how this algorithm should work, we first
-
3.10. Gene prediction in eukaryotic genomes
RechenmannFrançoisIf it is possible to have verygood predictions for bacterial genes, it's certainly not the caseyet for eukaryotic genomes. Eukaryotic cells have manydifferences in comparison to prokaryotic cells. You
-
4.8. A recursive algorithm
RechenmannFrançoisWe have seen how we can computethe optimal cost, the ending node of our grid if we know the optimal cost of the three adjacent nodes. This is this computation scheme we can see here using the notation
-
5.6. The diversity of bioinformatics algorithms
RechenmannFrançoisIn this course, we have seen a very little set of bioinformatic algorithms. There exist numerous various algorithms in bioinformatics which deal with a large span of classes of problems. For example,
-
1.6. GC and AT contents of DNA sequence
RechenmannFrançoisWe have designed our first algorithmfor counting nucleotides. Remember, what we have writtenin pseudo code is first declaration of variables. We have several integer variables that are variables which
-
2.8. DNA sequencing
RechenmannFrançoisDuring the last session, I explained several times how it was important to increase the efficiency of sequences processing algorithm because sequences arevery long and there are large volumes of
-
3.5. Making the predictions more reliable
RechenmannFrançoisWe have got a bacterial gene predictor but the way this predictor works is rather crude and if we want to have more reliable results, we have to inject into this algorithmmore biological knowledge. We
-
4.6. A path is optimal if all its sub-paths are optimal
RechenmannFrançoisA sequence alignment between two sequences is a path in a grid. So that, an optimal sequence alignmentis an optimal path in the same grid. We'll see now that a property of this optimal path provides
-
5.1. The tree of life
RechenmannFrançoisWelcome to this fifth and last week of our course on genomes and algorithms that is the computer analysis of genetic information. During this week, we will firstsee what phylogenetic trees are and how
-
1.1. The cell, atom of the living world
RechenmannFrançoisWelcome to this introduction to bioinformatics. We will speak of genomes and algorithms. More specifically, we will see how genetic information can be analysed by algorithms. In these five weeks to
-
1.9. Predicting the origin of DNA replication?
RechenmannFrançoisWe have seen a nice algorithm to draw, let's say, a DNA sequence. We will see that first, we have to correct a little bit this algorithm. And then we will see how such as imple algorithm can provide
Sur le même thème
-
Stockage de données numériques sur ADN synthétique : Théorie de l'information
Kas HannaSergeQuelle quantité d'information peut-on stocker et récupérer de manière fiable dans l'ADN ?
-
Stockage de données numériques sur ADN synthétique : Codage Source
AntoniniMarcCodage source pour le stockage de données sur ADN synthétique
-
The tree of life
AbbySophieLes Rencontres Exobiologiques pour Doctorants (RED) sont une école de formation sur les « bases de l'astrobiologie ». L’édition 2025 s’est tenue du 16 au 21 mars au Parc Ornithologique du Teich.
-
Stockage de données numériques sur ADN synthétique : Codage Canal
DuprazElsaTechniques de codage pour le stockage de données sur ADN
-
Stockage de données numériques sur ADN synthétique : Reconstruction des données
LavenierDominiqueTraitement des données après séquençage
-
Machines algorithmiques, mythes et réalités
MazenodVincentVincent Mazenod, informaticien, partage le fruit de ses réflexions sur l'évolution des outils numériques, en lien avec les problématiques de souveraineté, de sécurité et de vie privée...
-
Stockage de données numériques sur ADN synthétique : Production des données: synthèse, séquençage
LavenierDominiqueBarbryPascalDescription des opérations d'écriture et de lecture des molécules d'ADN : synthèse et séquençage.
-
Stockage de données numériques sur ADN synthétique : Introduction au domaine
AntoniniMarcDuprazElsaLavenierDominiquePrésentation globale des différentes étapes du stockage de données sur des molécules d'ADN synthétique
-
Désassemblons le numérique - #Episode11 : Les algorithmes façonnent-ils notre société ?
SchwartzArnaudLima PillaLaércioEstériePierreSalletFrédéricFerbosAudeRoumanosRayyaChraibi KadoudIkramUn an après le tout premier hackathon sur les méthodologies d'enquêtes journalistiques sur les algorithmes, ce nouvel épisode part à la rencontre de différents points de vue sur les algorithmes.
-
Les machines à enseigner. Du livre à l'IA...
BruillardÉricQue peut-on, que doit-on déléguer à des machines ? C'est l'une des questions explorées par Éric Bruillard qui, du livre aux IA génératives, expose l'évolution des machines à enseigner...
-
Désassemblons le numérique - #Episode9 : Bientôt des supercalculateurs dans nos piscines ?
BeaumontOlivierBouzelRémiDes supercalculateurs feraient-ils bientôt leur apparition dans les piscines municipales pour les chauffer ? Réponses d'Olivier Beaumont, responsable de l'équipe-projet Topal, et Rémi Bouzel,
-
Le projet dnarXiv : Stockage de données sur des molécules d'ADN
LavenierDominiqueDuprazElsaLeblancJulienCoatrieuxGouenouDominique Lavenier, Elsa Dupraz, Julien Leblanc et Gouenou Coatrieux nous présentent le projet dnarXiv, un projet porté par le LabEx CominLabs qui explore le stockage de données sur des molécules d






















