Notice
2.2. Les gènes, de Mendel à la biologie moléculaire
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
Descriptif
La séquence de caractères est un bon modèle de l'ADN, un des modèles possibles de l'ADN et il est bon parce qu'il est utile. On va voir en particulier que ce modèle simple peut servir de support à de la prédiction de gènes. On va pouvoir grâce à ce modèle-là, avec les algorithmes appropriés, trouver les gènes sur l'ADN. Et donc, surtout, sur la séquence qui représente cet ADN.
Cette notion de gènes, qui s'impose actuellement comme étant la portion de l'ADN qui code pour les protéines, n'a pas toujours été connue en tant que telle. La première fois qu'on a parlé des gènes, c'était en fait lors des travaux du moine Gregor Mendel. Vers les années 1850-60, Gregor Mendel étudie dans son monastère la transmission de caractéristiques de graines de pois de senteur. En particulier, si les graines était lisses et ridées. Ils faisaient des croisements entre les différents plants pour essayer de trouver une règle qui expliquerait comment certains caractères se transmettaient ou pas aux générations suivantes...
Intervention / Responsable scientifique
Thème
Documentation
A noter
A noter...
Si vous avez quelques notions de génétique moléculaire, vous êtes en droit d’être surpris par la manière de présenter la transcription d’une région d’ADN. En effet, dans la vidéo, il est expliqué que la séquence transcrite est obtenue à partir de la séquence d’ADN en remplaçant les occurrences de T par U.
Or, le processus de transcription est quelque peu plus complexe.
Considérons la séquence 5’ ATTCGATCGGGTATTACG 3’ au sein d’un gène et donc susceptible d’être traduite en une chaîne d’acides aminés.
C’est la portion d’ADN portée par le brin complémentaire qui est en fait transcrite. Cette séquence complémentaire est 3’ TAAGCTAGCCCATAATGC 5’.
La transcription se fait en parcourant cette chaîne dans le sens 5’ vers 3’. Elle consiste à développer une chaîne d’ARN complémentaire, en commençant par son extrémité 3’ vers 5’, à travers les règles d’appariement A – T, C – G, G –C et T – U. La séquence d’ARN qui en résulte est donc 5’ AUUCGAUCGGGGUAUUACG 3’ qui est bien celle obtenue par l’algorithme qui remplace directement les occurrences de T par U.
L’algorithme de transcription présenté dans la vidéo est correct, mais il « court-circuite » les étapes des processus biologiques en œuvre au sein de la cellule.
Cet état de fait est fréquent : les algorithmes bioinformatiques visent à être efficaces, par exemple pour prédire les gènes ; ils ne cherchent pas à simuler les processus biologiques en œuvre.
Dans la même collection
-
2.7. Les compromis de la conception d’algorithmes
RechenmannFrançoisParmentelatThierryLa mise en oeuvre d'une structure de données appropriée permet, nous l'avons vu, d'améliorer les performances d'algorithmes. Nous en avons vu l'exemple sur la recherche d'un triplet dans un tableau de
-
2.1. La séquence est-elle un bon modèle de l’ADN ?
RechenmannFrançoisParmentelatThierryL'ADN porte l'information génétique, plus précisément l'ADN porte les gènes, c'est-à-dire les régions de cette molécule qui portent l'information utilisée par la cellule pour synthétiser les protéines
-
2.10. Comment trouver les gènes ?
RechenmannFrançoisParmentelatThierryL'obtention de la séquence complète d'un génome d'un organisme vivant est certes un beau résultat, mais c'est en fait le début d'une longue phase d'interprétation, d'annotations et de comparaisons.
-
2.5. Implémenter le code génétique
RechenmannFrançoisParmentelatThierryNous avons écrit le corps de l'algorithme de traduction, et nous avons fractionné la complexité d'écriture de cet algorithme en faisant appel à une fonction qui recherche dans le tableau, qui
-
2.8. Les technologies de séquençage de l’ADN
RechenmannFrançoisParmentelatThierryNous parlons beaucoup dans ce cours de séquences génomiques ou séquences d'ADN, que nous voyons pour des raisons algorithmiques sous forme de chaînes de caractères. Comment ces séquences, ces chaînes
-
2.3. Le code génétique
RechenmannFrançoisParmentelatThierryGènes et protéines, mais qu'est-ce qu'une protéine ? Une protéine, c'est également une molécule qui est constituée d'une succession de ce que l'on appelle les acides aminés. C'est donc une chaîne d
-
2.6. Algorithmes + structures de données = programmes
RechenmannFrançoisParmentelatThierryEn écrivant le code de la fonction, qui recherche un triplet dans le tableau qui implémente le code génétique, nous avons terminé et obtenu un algorithme de traduction d'une séquence d'ADN, voire d
-
2.9. Le séquençage de génomes complets
RechenmannFrançoisParmentelatThierryLes progrès dans les technologies de séquençage ont permis d'aborder le séquençage complet de génome. Là encore, les progrès ont été spectaculaires. Prenons l'exemple du projet de séquençage de la
-
2.4. Un algorithme de traduction
RechenmannFrançoisParmentelatThierryUne protéine, en tant que succession d'acides aminés, peut-être vue comme le résultat d'un processus de traduction d'une chaîne de caractères écrite dans un alphabet de 4 lettres en une autre chaîne
Avec les mêmes intervenants et intervenantes
-
1.3. DNA codes for genetic information
RechenmannFrançoisRemember at the heart of any cell,there is this very long molecule which is called a macromolecule for this reason, which is the DNA molecule. Now we will see that DNA molecules support what is called
-
2.1. The sequence as a model of DNA
RechenmannFrançoisWelcome back to our course on genomes and algorithms that is a computer analysis ofgenetic information. Last week we introduced the very basic concept in biology that is cell, DNA, genome, genes
-
2.9. Whole genome sequencing
RechenmannFrançoisSequencing is anexponential technology. The progresses in this technologyallow now to a sequence whole genome, complete genome. What does it mean? Well let'stake two examples: some twenty years ago,
-
3.7. Index and suffix trees
RechenmannFrançoisWe have seen with the Boyer-Moore algorithm how we can increase the efficiency of spin searching through the pre-processing of the pattern to be searched. Now we will see that an alternative way of
-
4.4. Aligning sequences is an optimization problem
RechenmannFrançoisWe have seen a nice and a quitesimple solution for measuring the similarity between two sequences. It relied on the so-called hammingdistance that is counting the number of differencesbetween two
-
5.2. The tree, an abstract object
RechenmannFrançoisWhen we speak of trees, of species,of phylogenetic trees, of course, it's a metaphoric view of a real tree. Our trees are abstract objects. Here is a tree and the different components of this tree.
-
1.6. GC and AT contents of DNA sequence
RechenmannFrançoisWe have designed our first algorithmfor counting nucleotides. Remember, what we have writtenin pseudo code is first declaration of variables. We have several integer variables that are variables which
-
2.5. Implementing the genetic code
RechenmannFrançoisRemember we were designing our translation algorithm and since we are a bit lazy, we decided to make the hypothesis that there was the adequate function forimplementing the genetic code. It's now time
-
3.2. A simple algorithm for gene prediction
RechenmannFrançoisBased on the principle we statedin the last session, we will now write in pseudo code a firstalgorithm for locating genes on a bacterial genome. Remember first how this algorithm should work, we first
-
3.10. Gene prediction in eukaryotic genomes
RechenmannFrançoisIf it is possible to have verygood predictions for bacterial genes, it's certainly not the caseyet for eukaryotic genomes. Eukaryotic cells have manydifferences in comparison to prokaryotic cells. You
-
4.8. A recursive algorithm
RechenmannFrançoisWe have seen how we can computethe optimal cost, the ending node of our grid if we know the optimal cost of the three adjacent nodes. This is this computation scheme we can see here using the notation
-
5.6. The diversity of bioinformatics algorithms
RechenmannFrançoisIn this course, we have seen a very little set of bioinformatic algorithms. There exist numerous various algorithms in bioinformatics which deal with a large span of classes of problems. For example,
Sur le même thème
-
Stockage de données numériques sur ADN synthétique : Théorie de l'information
Kas HannaSergeQuelle quantité d'information peut-on stocker et récupérer de manière fiable dans l'ADN ?
-
Stockage de données numériques sur ADN synthétique : Codage Source
AntoniniMarcCodage source pour le stockage de données sur ADN synthétique
-
The tree of life
AbbySophieLes Rencontres Exobiologiques pour Doctorants (RED) sont une école de formation sur les « bases de l'astrobiologie ». L’édition 2025 s’est tenue du 16 au 21 mars au Parc Ornithologique du Teich.
-
Stockage de données numériques sur ADN synthétique : Codage Canal
DuprazElsaTechniques de codage pour le stockage de données sur ADN
-
Stockage de données numériques sur ADN synthétique : Reconstruction des données
LavenierDominiqueTraitement des données après séquençage
-
Machines algorithmiques, mythes et réalités
MazenodVincentVincent Mazenod, informaticien, partage le fruit de ses réflexions sur l'évolution des outils numériques, en lien avec les problématiques de souveraineté, de sécurité et de vie privée...
-
Stockage de données numériques sur ADN synthétique : Production des données: synthèse, séquençage
LavenierDominiqueBarbryPascalDescription des opérations d'écriture et de lecture des molécules d'ADN : synthèse et séquençage.
-
Stockage de données numériques sur ADN synthétique : Introduction au domaine
AntoniniMarcDuprazElsaLavenierDominiquePrésentation globale des différentes étapes du stockage de données sur des molécules d'ADN synthétique
-
Désassemblons le numérique - #Episode11 : Les algorithmes façonnent-ils notre société ?
SchwartzArnaudLima PillaLaércioEstériePierreSalletFrédéricFerbosAudeRoumanosRayyaChraibi KadoudIkramUn an après le tout premier hackathon sur les méthodologies d'enquêtes journalistiques sur les algorithmes, ce nouvel épisode part à la rencontre de différents points de vue sur les algorithmes.
-
Les machines à enseigner. Du livre à l'IA...
BruillardÉricQue peut-on, que doit-on déléguer à des machines ? C'est l'une des questions explorées par Éric Bruillard qui, du livre aux IA génératives, expose l'évolution des machines à enseigner...
-
Désassemblons le numérique - #Episode9 : Bientôt des supercalculateurs dans nos piscines ?
BeaumontOlivierBouzelRémiDes supercalculateurs feraient-ils bientôt leur apparition dans les piscines municipales pour les chauffer ? Réponses d'Olivier Beaumont, responsable de l'équipe-projet Topal, et Rémi Bouzel,
-
Le projet dnarXiv : Stockage de données sur des molécules d'ADN
LavenierDominiqueDuprazElsaLeblancJulienCoatrieuxGouenouDominique Lavenier, Elsa Dupraz, Julien Leblanc et Gouenou Coatrieux nous présentent le projet dnarXiv, un projet porté par le LabEx CominLabs qui explore le stockage de données sur des molécules d






















