Notice
3.1. Tous les gènes se terminent sur un codon stop
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
Descriptif
Une fois la séquence d'un génome complet obtenue, débute la phase d'annotation. L'annotation elle-même consiste tout d'abord à rechercher la localisation, c'est-à-dire la position des gènes sur cette séquence. Cette semaine, nous allons nous intéresser à la prédiction des gènes, nous allons étudier un algorithme de prédiction de gènes sur des séquences génomiques procaryotes, nous allons essayer d'améliorer la qualité de ces prédictions en ayant recours à des additifs à notre algorithme, recherches de certains motifs supplémentaires, éventuellement recours à des techniques probabilistes. Nous allons chercher à voir comment on peut comparer la qualité des prédictions de différentes méthodes, et à la fin nous étudierons le problème particulier que pose le problème très important de la prédiction des gènes dans un génome eucaryote. Problème encore mal résolu.
Voilà, pourquoi quand nous parlons ici de prédiction de gènes, nous parlons de prédiction de gènes sur des génomes bactériens. Comment retrouve-t-on des gènes et leurs positions de début et de fin dans un génome bactérien ? Nous connaissons les conditions nécessaires. On sait qu'une région codante, par définition de ce que nous avons vu précédemment, ne peut se situer qu'entre 2 Stop, et des Stop qui sont dans la même phase. 2 Stop consécutifs dans la même phase signifient 2 Stop qui sont séparés par des triplets, autrement dit par un nombre de bases, de nucléotides, de lettres, multiples de 3...
ERRATUM
Slide 6 : La marque de fin d'ORF est incorrectement positionnée sur la slide 6. En effet, le triplet STOP ne fait pas partie de l'ORF, même s'il la délimite. La slide 7 est correcte.
Intervention
Dans la même collection
-
3.7. Index et arbre des suffixes
RechenmannFrançoisParmentelatThierryIl y a donc deux approches pour améliorer la performance des algorithmes de recherche d'un motif dans une chaîne de caractères. La première approche consiste à pré-traiter le motif. On a vu un exemple
-
3.2. Un algorithme simple de prédiction de gènes
RechenmannFrançoisParmentelatThierrySur la base des principes énoncés précédemment, nous allons écrire un premier algorithme de prédiction de gènes sur un texte génomique procaryote. Je rappelle ces principes. L'idée est la suivante :
-
3.10. La prédiction de gènes dans les génomes eucaryotes
RechenmannFrançoisParmentelatThierrySi nous disposons actuellement de prédicteurs de gènes dans les génomes procaryotes de très bonne efficacité, avec des prédictions relativement fiables, c'est en fait loin d'être le cas sur les
-
3.5. Comment améliorer la qualité des prédictions ?
RechenmannFrançoisParmentelatThierryIl faut toujours le répéter et le souligner, les algorithmes qui déterminent des gènes déterminent des gènes candidats. Ce sont des prédictions de gènes. Donc la question est de savoir s'il est
-
3.8. Des méthodes probabilistes à la rescousse
RechenmannFrançoisParmentelatThierryNous avons vu comment la qualité des prédictions de gènes dans un génome bactérien, pouvait être améliorée à travers la recherche d'occurrences de motifs particuliers liés au site de fixation du
-
3.3. À la recherche des codons start et stop
RechenmannFrançoisParmentelatThierryNous avons écrit la structure, l'ossature d'un algorithme de prédiction de gènes dans un génome bactérien, en utilisant les principes que nous avions énoncés précédemment. Cet algorithme est incomplet
-
3.6. L’algorithme de Boyer-Moore
RechenmannFrançoisParmentelatThierryVous avez compris que la recherche de motifs, c'est-à-dire de sous-chaînes de caractères dans une chaîne plus importante, était un composant important de beaucoup d'algorithmes de bio-informatique.
-
3.9. Comment évaluer la qualité de prédiction des méthodes ?
RechenmannFrançoisParmentelatThierryNous avons vu qu'il était possible, ou du moins nous le pensions, améliorer la qualité de prédiction des gènes sur un génome bactérien en introduisant des démarches supplémentaires, de recherches de
-
3.4. Prédiction de tous les gènes d’une séquence
RechenmannFrançoisParmentelatThierryEn combinant de façon adéquate la recherche des triplés Stop et Start sur un brin d'ADN, nous avons obtenu un algorithme qui prédit les gènes sur ce brin, mais également sur une phase. C'est-à-dire en
Avec les mêmes intervenants et intervenantes
-
1.3. DNA codes for genetic information
RechenmannFrançoisRemember at the heart of any cell,there is this very long molecule which is called a macromolecule for this reason, which is the DNA molecule. Now we will see that DNA molecules support what is called
-
2.1. The sequence as a model of DNA
RechenmannFrançoisWelcome back to our course on genomes and algorithms that is a computer analysis ofgenetic information. Last week we introduced the very basic concept in biology that is cell, DNA, genome, genes
-
2.9. Whole genome sequencing
RechenmannFrançoisSequencing is anexponential technology. The progresses in this technologyallow now to a sequence whole genome, complete genome. What does it mean? Well let'stake two examples: some twenty years ago,
-
3.7. Index and suffix trees
RechenmannFrançoisWe have seen with the Boyer-Moore algorithm how we can increase the efficiency of spin searching through the pre-processing of the pattern to be searched. Now we will see that an alternative way of
-
4.4. Aligning sequences is an optimization problem
RechenmannFrançoisWe have seen a nice and a quitesimple solution for measuring the similarity between two sequences. It relied on the so-called hammingdistance that is counting the number of differencesbetween two
-
5.2. The tree, an abstract object
RechenmannFrançoisWhen we speak of trees, of species,of phylogenetic trees, of course, it's a metaphoric view of a real tree. Our trees are abstract objects. Here is a tree and the different components of this tree.
-
1.6. GC and AT contents of DNA sequence
RechenmannFrançoisWe have designed our first algorithmfor counting nucleotides. Remember, what we have writtenin pseudo code is first declaration of variables. We have several integer variables that are variables which
-
2.5. Implementing the genetic code
RechenmannFrançoisRemember we were designing our translation algorithm and since we are a bit lazy, we decided to make the hypothesis that there was the adequate function forimplementing the genetic code. It's now time
-
3.2. A simple algorithm for gene prediction
RechenmannFrançoisBased on the principle we statedin the last session, we will now write in pseudo code a firstalgorithm for locating genes on a bacterial genome. Remember first how this algorithm should work, we first
-
3.10. Gene prediction in eukaryotic genomes
RechenmannFrançoisIf it is possible to have verygood predictions for bacterial genes, it's certainly not the caseyet for eukaryotic genomes. Eukaryotic cells have manydifferences in comparison to prokaryotic cells. You
-
4.8. A recursive algorithm
RechenmannFrançoisWe have seen how we can computethe optimal cost, the ending node of our grid if we know the optimal cost of the three adjacent nodes. This is this computation scheme we can see here using the notation
-
5.6. The diversity of bioinformatics algorithms
RechenmannFrançoisIn this course, we have seen a very little set of bioinformatic algorithms. There exist numerous various algorithms in bioinformatics which deal with a large span of classes of problems. For example,
Sur le même thème
-
Désassemblons le numérique - #Episode11 : Les algorithmes façonnent-ils notre société ?
SchwartzArnaudLima PillaLaércioEstériePierreSalletFrédéricFerbosAudeRoumanosRayyaChraibi KadoudIkramUn an après le tout premier hackathon sur les méthodologies d'enquêtes journalistiques sur les algorithmes, ce nouvel épisode part à la rencontre de différents points de vue sur les algorithmes.
-
Les machines à enseigner. Du livre à l'IA...
BruillardÉricQue peut-on, que doit-on déléguer à des machines ? C'est l'une des questions explorées par Éric Bruillard qui, du livre aux IA génératives, expose l'évolution des machines à enseigner...
-
Désassemblons le numérique - #Episode9 : Bientôt des supercalculateurs dans nos piscines ?
BeaumontOlivierBouzelRémiDes supercalculateurs feraient-ils bientôt leur apparition dans les piscines municipales pour les chauffer ? Réponses d'Olivier Beaumont, responsable de l'équipe-projet Topal, et Rémi Bouzel,
-
Le projet dnarXiv : Stockage de données sur des molécules d'ADN
LavenierDominiqueDuprazElsaLeblancJulienCoatrieuxGouenouDominique Lavenier, Elsa Dupraz, Julien Leblanc et Gouenou Coatrieux nous présentent le projet dnarXiv, un projet porté par le LabEx CominLabs qui explore le stockage de données sur des molécules d
-
Projection methods for community detection in complex networks
LitvakNellyCommunity detection is one of most prominent tasks in the analysis of complex networks such as social networks, biological networks, and the world wide web. A community is loosely defined as a group
-
Lara Croft. doing fieldwork under surveillance
Dall'AgnolaJasminLara Croft. Doing Fieldwork Under Surveillance Intervention de Jasmin Dall'Agnola (The George Washington University), dans le cadre du Colloque coorganisé par Anders Albrechtslund, professeur en
-
Containing predictive tokens in the EU
CzarnockiJanContaining Predictive Tokens in the EU – Mapping the Laws Against Digital Surveillance, intervention de Jan Czarnocki (KU Leuven), dans le cadre du Colloque coorganisé par Anders Albrechtslund,
-
Ivan Murit - Processus de création d'images
MuritIvanJe vais présenter une manière décalée d'aborder les outils d'impression. Pour cela nous ne partirons pas de l'envie d'imprimer une image préexistante, mais d'avant cela : comment se crée une forme
-
Le Creativ’Lab, au cœur de la robotique et de l’intelligence artificielle (ASR N°18 - LORIA)
HénaffPatrickLefebvreSylvainLe LORIA, laboratoire phare de la Grande Région dans le domaine de l’informatique, propose de rendre la recherche plus ouverte, plus collaborative, plus ambitieuse… en un mot, plus créative, à travers
-
Les algorithmes de Parcoursup
MathieuClaireL’objectif de la journée « Algorithmes d’aide à la décision publique » était de sensibiliser le grand public aux rôles des algorithmes d’aide à la décision publique utilisés par exemple pour l
-
Algorithmes d'aide à la décision publique / Ouverture
RéveillèreLaurentMaveyraud-TricoireSamuelBlancXavierBertrandYvesMainguenéMarcL’objectif de la journée « Algorithmes d’aide à la décision publique » était de sensibiliser le grand public aux rôles des algorithmes d’aide à la décision publique utilisés par exemple pour l
-
Quelques enjeux autour des algorithmes d'aide à la décision publique
TarissanFabienL’objectif de la journée « Algorithmes d’aide à la décision publique » était de sensibiliser le grand public aux rôles des algorithmes d’aide à la décision publique utilisés par exemple pour l