Notice
2.4. Un algorithme de traduction
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
Descriptif
Une protéine, en tant que succession d'acides aminés, peut-être vue comme le résultat d'un processus de traduction d'une chaîne de caractères écrite dans un alphabet de 4 lettres en une autre chaîne de caractères écrite en un l'alphabet de 20 lettres.
La correspondance entre ces 2 chaînes, la table qui permet de passer de l'une à l'autre, est le code génétique. Code génétique qu'on retrouve quasi identique chez tous les organismes vivants.
Donc, si maintenant on regarde à nouveau ce processus de transcription et traduction au niveau vraiment de la chaîne de caractères en détails, que voit-on ? Voilà un gène. Un gène va commencer sur un codon d'initiation de la traduction ATG, et se terminer sur un des codons de fin de traduction qu'on appelle codon-stop. Entre les 2, une succession de triplets. Donc, il y a d'abord cette phase de transcription et ensuite la phase qui nous intéresse maintenant, cette phase de traduction, qui à chaque triplet va associer à travers le code génétique un acide aminé pour obtenir au bout du compte une succession d'acides aminés, une chaîne de caractères dans un alphabet de 4 lettres...
Intervention / Responsable scientifique
Dans la même collection
-
2.1. La séquence est-elle un bon modèle de l’ADN ?
RechenmannFrançoisParmentelatThierryL'ADN porte l'information génétique, plus précisément l'ADN porte les gènes, c'est-à-dire les régions de cette molécule qui portent l'information utilisée par la cellule pour synthétiser les protéines
-
2.10. Comment trouver les gènes ?
RechenmannFrançoisParmentelatThierryL'obtention de la séquence complète d'un génome d'un organisme vivant est certes un beau résultat, mais c'est en fait le début d'une longue phase d'interprétation, d'annotations et de comparaisons.
-
2.5. Implémenter le code génétique
RechenmannFrançoisParmentelatThierryNous avons écrit le corps de l'algorithme de traduction, et nous avons fractionné la complexité d'écriture de cet algorithme en faisant appel à une fonction qui recherche dans le tableau, qui
-
2.8. Les technologies de séquençage de l’ADN
RechenmannFrançoisParmentelatThierryNous parlons beaucoup dans ce cours de séquences génomiques ou séquences d'ADN, que nous voyons pour des raisons algorithmiques sous forme de chaînes de caractères. Comment ces séquences, ces chaînes
-
2.2. Les gènes, de Mendel à la biologie moléculaire
RechenmannFrançoisParmentelatThierryLa séquence de caractères est un bon modèle de l'ADN, un des modèles possibles de l'ADN et il est bon parce qu'il est utile. On va voir en particulier que ce modèle simple peut servir de support à de
-
2.6. Algorithmes + structures de données = programmes
RechenmannFrançoisParmentelatThierryEn écrivant le code de la fonction, qui recherche un triplet dans le tableau qui implémente le code génétique, nous avons terminé et obtenu un algorithme de traduction d'une séquence d'ADN, voire d
-
2.9. Le séquençage de génomes complets
RechenmannFrançoisParmentelatThierryLes progrès dans les technologies de séquençage ont permis d'aborder le séquençage complet de génome. Là encore, les progrès ont été spectaculaires. Prenons l'exemple du projet de séquençage de la
-
2.3. Le code génétique
RechenmannFrançoisParmentelatThierryGènes et protéines, mais qu'est-ce qu'une protéine ? Une protéine, c'est également une molécule qui est constituée d'une succession de ce que l'on appelle les acides aminés. C'est donc une chaîne d
-
2.7. Les compromis de la conception d’algorithmes
RechenmannFrançoisParmentelatThierryLa mise en oeuvre d'une structure de données appropriée permet, nous l'avons vu, d'améliorer les performances d'algorithmes. Nous en avons vu l'exemple sur la recherche d'un triplet dans un tableau de
Avec les mêmes intervenants et intervenantes
-
1.7. DNA walk
RechenmannFrançoisWe will now design a more graphical algorithm which is called "the DNA walk". We shall see what does it mean "DNA walk". Walk on to DNA. Something like that, yes. But first, just have a look again at
-
2.6. Algorithms + data structures = programs
RechenmannFrançoisBy writing the Lookup GeneticCode Function, we completed our translation algorithm. So we may ask the question about the algorithm, does it terminate? Andthe answer is yes, obviously. Is it pertinent,
-
3.3. Searching for start and stop codons
RechenmannFrançoisWe have written an algorithm for finding genes. But you remember that we arestill to write the two functions for finding the next stop codonand the next start codon. Let's see how we can do that. We
-
4.1. How to predict gene/protein functions?
RechenmannFrançoisLast week we have seen that annotating a genome means first locating the genes on the DNA sequences that is the genes, the region coding for proteins. But this is indeed the first step,the next very
-
4.10. How efficient is this algorithm?
RechenmannFrançoisWe have seen the principle of an iterative algorithm in two paths for aligning and comparing two sequences of characters, here DNA sequences. And we understoodwhy the iterative version is much more
-
5.7. The application domains in microbiology
RechenmannFrançoisBioinformatics relies on many domains of mathematics and computer science. Of course, algorithms themselves on character strings are important in bioinformatics, we have seen them. Algorithms and
-
1.2. At the heart of the cell: the DNA macromolecule
RechenmannFrançoisDuring the last session, we saw how at the heart of the cell there's DNA in the nucleus, sometimes of cells, or directly in the cytoplasm of the bacteria. The DNA is what we call a macromolecule, that
-
1.10. Overlapping sliding window
RechenmannFrançoisWe have made some drawings along a genomic sequence. And we have seen that although the algorithm is quite simple, even if some points of the algorithmare bit trickier than the others, we were able to
-
2.3. The genetic code
RechenmannFrançoisGenes code for proteins. What is the correspondence betweenthe genes, DNA sequences, and the structure of proteins? The correspondence isthe genetic code. Proteins have indeedsequences of amino acids.
-
3.6. Boyer-Moore algorithm
RechenmannFrançoisWe have seen how we can make gene predictions more reliable through searching for all the patterns,all the occurrences of patterns. We have seen, for example, howif we locate the RBS, Ribosome
-
4.5. A sequence alignment as a path
RechenmannFrançoisComparing two sequences and thenmeasuring their similarities is an optimization problem. Why? Because we have seen thatwe have to take into account substitution and deletion. During the alignment, the
-
5.5. Differences are not always what they look like
RechenmannFrançoisThe algorithm we have presented works on an array of distance between sequences. These distances are evaluated on the basis of differences between the sequences. The problem is that behind the
Sur le même thème
-
La voix, une donnée identifiante à protéger
VincentEmmanuelEmmanuel Vincent, chercheur au Centre Inria de l'Université de Lorraine et au Loria (Laboratoire lorrain de recherche en informatique et ses applications), présente sa recherche sur l'anonymisation de
-
Podcast 1/4 d'heure avec : Emmanuel Vincent, chercheur au Centre Inria de l'Université de Lorraine …
VincentEmmanuelRencontre avec Emmanuel Vincent - chercheur au Centre Inria de l'Université de Lorraine et Loria (Laboratoire lorrain de recherche en informatique et ses applications).
-
Stockage de données numériques sur ADN synthétique : Introduction au domaine
AntoniniMarcDuprazElsaLavenierDominiquePrésentation globale des différentes étapes du stockage de données sur des molécules d'ADN synthétique
-
Stockage de données numériques sur ADN synthétique : Production des données: synthèse, séquençage
LavenierDominiqueBarbryPascalDescription des opérations d'écriture et de lecture des molécules d'ADN : synthèse et séquençage.
-
Stockage de données numériques sur ADN synthétique : Reconstruction des données
LavenierDominiqueTraitement des données après séquençage
-
Stockage de données numériques sur ADN synthétique : Codage Canal
DuprazElsaTechniques de codage pour le stockage de données sur ADN
-
Stockage de données numériques sur ADN synthétique : Codage Source
AntoniniMarcCodage source pour le stockage de données sur ADN synthétique
-
Stockage de données numériques sur ADN synthétique : Théorie de l'information
Kas HannaSergeQuelle quantité d'information peut-on stocker et récupérer de manière fiable dans l'ADN ?
-
The tree of life
AbbySophieLes Rencontres Exobiologiques pour Doctorants (RED) sont une école de formation sur les « bases de l'astrobiologie ». L’édition 2025 s’est tenue du 16 au 21 mars au Parc Ornithologique du Teich.
-
Machines algorithmiques, mythes et réalités
MazenodVincentVincent Mazenod, informaticien, partage le fruit de ses réflexions sur l'évolution des outils numériques, en lien avec les problématiques de souveraineté, de sécurité et de vie privée...
-
Désassemblons le numérique - #Episode11 : Les algorithmes façonnent-ils notre société ?
SchwartzArnaudLima PillaLaércioEstériePierreSalletFrédéricFerbosAudeRoumanosRayyaChraibi KadoudIkramUn an après le tout premier hackathon sur les méthodologies d'enquêtes journalistiques sur les algorithmes, ce nouvel épisode part à la rencontre de différents points de vue sur les algorithmes.
-
Les machines à enseigner. Du livre à l'IA...
BruillardÉricQue peut-on, que doit-on déléguer à des machines ? C'est l'une des questions explorées par Éric Bruillard qui, du livre aux IA génératives, expose l'évolution des machines à enseigner...





















